如圖,拋物線y=-x2+mx過點A(4,0),O為坐標原點,Q是拋物線的頂點.
(1)求m的值;
(2)點P是x軸上方拋物線上的一個動點,過P作PH⊥x軸,H為垂足.有一個同學說:“在x軸上方拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點P運動至點Q時,折線P-H-O的長度最長”,請你用所學知識判斷:這個同學的說法是否正確.
(1)∵點A(4,0)在拋物線上
∴-42+4m=0
∴m=4
∴y=-x2+4x;

(2)設點P的坐標為(x,-x2+4x)
y=-x2+4x
∴PH=-x2+4x,OH=x
y=-x2+4x
∴折線P-H-O的長度=PH+OH
y=-x2+4x+x
=-x2+5x
=-(x-
5
2
)2+
25
4

∴當x=2.5時,折線P-H-O的長度最長為
25
4

∵點Q的橫坐標為-
4
2×(-1)
=2,
∴這個同學的說法不正確.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直角梯形ABCO的邊OC落在x軸的正半軸上,且ABOC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的兩邊分別落在坐標軸上,且它的面積等于直角梯形ABCO面積.將正方形ODEF沿x軸的正半軸平行移動,設它與直角梯形ABCO的重疊部分面積為S.
(1)分析與計算:求正方形ODEF的邊長;
(2)操作與求解:
①正方形ODEF平行移動過程中,通過操作、觀察,試判斷S(S>0)的變化情況是______;
A、逐漸增大 B、逐漸減少 C、先增大后減少 D、先減少后增大
②當正方形ODEF頂點O移動到點C時,求S的值;
(3)探究與歸納:
設正方形ODEF的頂點O向右移動的距離為x,求重疊部分面積S與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=(x-2)2的頂點為C,直線y=2x+4與拋物線交于A、B兩點,試求S△ABC

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2-
4
3
3
x+3
交x軸于A、B兩點,交y軸于C點,且Rt△AOCRt△COB,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx-1經(jīng)過點A(一1,0)、B(m,0)(m>0),且與y軸交于點C
(1)求拋物線對應的函數(shù)表達式(用含m的式子表示);
(2)如圖,⊙M經(jīng)過A、B、C三點,求扇形MBC(陰影部分)的面積S(用含m的式子表示);
(3)若拋物線上存在點P,使得△APB△ABC,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我市某鎮(zhèn)的一種特產(chǎn)由于運輸原因,長期只能在當?shù)劁N售.當?shù)卣畬υ撎禺a(chǎn)的銷售投資收益為:每投入x萬元,可獲得利潤P=-
1
100
(x-60)2+41
(萬元).當?shù)卣當M在“十二•五”規(guī)劃中加快開發(fā)該特產(chǎn)的銷售,其規(guī)劃方案為:在規(guī)劃前后對該項目每年最多可投入100萬元的銷售投資,在實施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產(chǎn)只能在當?shù)劁N售;公路通車后的3年中,該特產(chǎn)既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(萬元).
(1)若不進行開發(fā),求5年所獲利潤的最大值是多少?
(2)若按規(guī)劃實施,求5年所獲利潤(扣除修路后)的最大值是多少?
(3)根據(jù)(1)、(2),該方案是否具有實施價值?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(-1,-3.2)及部分圖象(如圖),由圖象可知關于x的方程ax2+bx+c=0的兩個根分別是x1=1.3和x2=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=-x2+2x+m的圖象如圖所示,則關于x的一元二次方程-x2+2x+m=0的根為______;不等式-x2+2x+m>0的解集是______;當x______時,y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知直線y=x與二次函數(shù)y=ax2-2x-1的圖象的一個交點M的橫坐標為1,則a的值為( 。
A.2B.1C.3D.4

查看答案和解析>>

同步練習冊答案