【題目】如圖,在平行四邊形ABCD中,E,F為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:(1)△ABF≌△DCE;
【答案】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.
∵四邊形ABCD是平行四邊形,∴AB=DC.
在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,
∴△ABF≌△DCE.
(2)∵△ABF≌△DCE,∴∠B=∠C.
∵四邊形ABCD是平行四邊形,∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∴四邊形ABCD是矩形.
【解析】(1)根據(jù)等量代換得到BE=CF,根據(jù)平行四邊形的性質(zhì)得AB=DC.利用“SSS”得△ABF≌△DCE.
(2)平行四邊形的性質(zhì)得到兩邊平行,從而∠B+∠C=180°.利用全等得∠B=∠C,從而得到一個(gè)直角,問題得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AC⊥BD于點(diǎn)E,連接AB,CD,BC
(1)求證:∠AOB+∠COD=180°;
(2)若AB=8,CD=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,點(diǎn)P在射線CB上運(yùn)動(dòng)(不包含點(diǎn)B、C),連接DP,交AB于點(diǎn)M,作BE⊥DP于點(diǎn)E,連接AE,作∠FAD=∠EAB,FA交DP于點(diǎn)F.
(1)如圖a,當(dāng)點(diǎn)P在CB的延長線上時(shí),
①求證:DF=BE;
②請判斷DE、BE、AE之間的數(shù)量關(guān)系并證明;
(2)如圖b,當(dāng)點(diǎn)P在線段BC上時(shí),DE、BE、AE之間有怎樣的數(shù)量關(guān)系?請直接寫出答案,不必證明;
(3)如果將已知中的正方形ABCD換成矩形ABCD,且AD:AB=:1,其他條件不變,當(dāng)點(diǎn)P在射線CB上時(shí),DE、BE、AE之間又有怎樣的數(shù)量關(guān)系?請直接寫出答案,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)B(2,0)、C(0,2)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為A.
(1)求拋物線的解析式;
(2)點(diǎn)D從點(diǎn)C出發(fā)沿線段CB以每秒個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),作DE⊥CB交y軸于點(diǎn)E,以CD、DE為邊作矩形CDEF,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t(s).
①當(dāng)點(diǎn)F落在拋物線上時(shí),求t的值;
②若點(diǎn)D在運(yùn)動(dòng)過程中,設(shè)△ABC與矩形CDEF重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適宜采用全面調(diào)查(普查)方式的是
A. 調(diào)查巴南區(qū)市民對“巴南區(qū)創(chuàng)建國家食品安全示范城市”的了解情況
B. 調(diào)查央視節(jié)目《國家寶藏》的收視率
C. 調(diào)查我校某班學(xué)生喜歡上數(shù)學(xué)課的情況
D. 調(diào)查學(xué)校所有電子白板的使用壽命
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲、乙兩輛貨車都要從A地送貨到B地,甲車先從A地出發(fā)勻速行駛,3小時(shí)后,乙車從A地出發(fā),并沿同一路線勻速行駛,當(dāng)乙車到達(dá)B地后立刻按原速返回,在返回途中第二次與甲車相遇。甲車出發(fā)的時(shí)間記為t (小時(shí)),兩車之間的距離記為y(千米),y與t的函數(shù)關(guān)系如圖所示,則乙車第二次與甲車相遇時(shí),甲車距離A地___千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,的頂點(diǎn)坐標(biāo)分別是,對于的橫長、縱長、縱橫比給出如下定義:
將中的最大值,稱為的橫長,記作;將中的最大值,稱為的縱長,記作;將叫做的縱橫比,記作.
例如:如圖的三個(gè)頂點(diǎn)的坐標(biāo)分別是,則,
所以.
如圖2,點(diǎn),
點(diǎn),
則的縱橫比______
的縱橫比______;
點(diǎn)F在第四象限,若的縱橫比為1,寫出一個(gè)符合條件的點(diǎn)F的坐標(biāo);
點(diǎn)M是雙曲線上一個(gè)動(dòng)點(diǎn),若的縱橫比為1,求點(diǎn)M的坐標(biāo);
如圖3,點(diǎn)以為圓心,1為半徑,點(diǎn)N是上一個(gè)動(dòng)點(diǎn),直接寫出的縱橫比的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直于x軸,垂足為點(diǎn)B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點(diǎn)C,交AB于點(diǎn)D,且AD=3.
(1)設(shè)點(diǎn)A的坐標(biāo)為(4,4)則點(diǎn)C的坐標(biāo)為 ;
(2)若點(diǎn)D的坐標(biāo)為(4,n).
①求反比例函數(shù)y=的表達(dá)式;
②求經(jīng)過C,D兩點(diǎn)的直線所對應(yīng)的函數(shù)解析式;
(3)在(2)的條件下,設(shè)點(diǎn)E是線段CD上的動(dòng)點(diǎn)(不與點(diǎn)C,D重合),過點(diǎn)E且平行y軸的直線l與反比例函數(shù)的圖象交于點(diǎn)F,求△OEF面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com