【題目】如圖,⊙O的半徑為4,A、B、C均是⊙O的點,點D是∠BAC的平分線與⊙O的交點,若∠BAC=120°,則弦BD的長為 _____________ .
【答案】4
【解析】
連結(jié)BC、OB、OC,延長DO交BC與H,利用角平分線定義得∠BAD=∠CAD=∠BAC=60°,則根據(jù)圓周角定理得到∠DBC=∠BCD=60°,于是可判斷△BCD為等邊三角形,所以BD=BC,∠BDC=60°;再利用∠ABD=∠CAD得到弧DC=弧DB,根據(jù)垂徑定理的推論得到DH⊥BC,BH=CH,接著根據(jù)圓周角定理計算出∠BOH=60°,然后在Rt△BOH中根據(jù)含30度的直角三角形三邊的關(guān)系可計算出BH=2,則BC=2BH=4,即BD=.
解:連結(jié)BC、OB、OC,延長DO交BC與H,如圖,
∵AD平分∠BAC,
∴∠BAD=∠CAD=∠BAC=60°,
∴∠DBC=∠BCD=60°,
∴△BCD為等邊三角形,
∴BD=BC,∠BDC=60°,
∵∠ABD=∠CAD,
∴弧DC=弧DB,
∴DH⊥BC,
∴BH=CH,∠BOH=∠BOC,
而∠BOC=2∠BDC=120°,
∴∠BOH=60°,
在Rt△BOH中,∵∠OBH=30°,
∴OH=OB=2,
∴BH=OH=,
∴BC=2BH=,
∴BD=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,等腰的底邊在軸上,已知,拋物線(其中)經(jīng)過三點,雙曲線(其中)經(jīng)過點軸,軸,垂足分別為且
(1)求出的值;當(dāng)為直角三角形時,請求出的表達(dá)式;
(2)當(dāng)為正三角形時,直線平分,求時的取值范圍;
(3)拋物線(其中)有一時刻恰好經(jīng)過點,且此時拋物線與雙曲線(其中)有且只有一個公共點(其中),我們不妨把此時刻的記作,請直接寫出拋物線(其中)與雙曲線(其中)有一個公共點時的取值范圍.(是已知數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于某個函數(shù),若自變量取實數(shù),其函數(shù)值恰好也等于時,則稱為這個函數(shù)的“等量值”.在函數(shù)存在“等量值”時,該函數(shù)的最大“等量值”與最小“等量值”的差稱為這個函數(shù)的“等量距離”,特別地,當(dāng)函數(shù)只有一個“等量值”時,規(guī)定其“等最距離”為0.
(1)請分別判斷函數(shù),,有沒有“等量值”?如果有,直接寫出其“等量距離”;
(2)已知函數(shù).
①若其“等量距離”為0,求的值;
②若,求其“等量距離”的取值范圍;
③若“等量距離”,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,∠A=30°,BC=6,D為斜邊AB上一點,以CD、CB為邊作平行四邊形CDEB,當(dāng)AD=_____時,平行四邊形CDEB為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(t,1)在第一象限,將OA繞點O順時針旋轉(zhuǎn)45°得到OB,若反比例數(shù)y=(k>0)的圖象經(jīng)過點A、B,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求經(jīng)過點O,C,A三點的拋物線的解析式.
(2)若點M是拋物線上一點,且位于線段OC的上方,連接MO、MC,問:點M位于何處時三角形MOC的面積最大?并求出三角形MOC的最大面積.
(3)拋物線上是否存在一點P,使∠OAP=∠BOC?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達(dá)35cm,點A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點D,在拉桿伸長到最大的情況下,當(dāng)點B距離水平地面34cm時,點C到水平地面的距離CE為55cm.設(shè)AF∥ MN.
(1)求⊙A的半徑.
(2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服,某人將手自然下垂在C端拉旅行箱時,CE為76cm,∠CAF=64°,求此時拉桿BC的伸長距離(結(jié)果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元。
(1)求購買一個足球、一個籃球各需多少元?
(2)根據(jù)學(xué)校實際情況,需從體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學(xué)最多可以購買多少個籃球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com