【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2
上述4個(gè)判斷中,正確的是(

A.①②
B.①④
C.①③④
D.②③④

【答案】B
【解析】解:①∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,
∴b2>4ac,故①正確;
②x=﹣2時(shí),y=4a﹣2b+c,而題中條件不能判斷此時(shí)y的正負(fù),即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②錯(cuò)誤;
③如果設(shè)ax2+bx+c=0的兩根為α、β(α<β),那么根據(jù)圖象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③錯(cuò)誤;
④∵二次函數(shù)y=ax2+bx+c的對(duì)稱軸是直線x=1,
∴x=﹣2與x=4時(shí)的函數(shù)值相等,
∵4<5,
∴當(dāng)拋物線開口向上時(shí),在對(duì)稱軸的右邊,y隨x的增大而增大,
∴y1<y2 , 故④正確.
故選:B.
【考點(diǎn)精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. 當(dāng)AB=BC時(shí),四邊形ABCD是菱形

B. 當(dāng)ACBD時(shí),四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時(shí),四邊形ABCD是矩形

D. 當(dāng)AC=BD時(shí),四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程,是一元二次方程的是(
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、D、E在⊙O上,弦AE、BD的延長(zhǎng)線相交于點(diǎn)C.若AB是⊙O的直徑,D是BC的中點(diǎn).

(1)試判斷AB、AC之間的大小關(guān)系,并給出證明;
(2)在上述題設(shè)條件下,當(dāng)△ABC為正三角形時(shí),點(diǎn)E是否AC的中點(diǎn)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風(fēng)暴,有極強(qiáng)的破壞力,據(jù)氣象觀測(cè),距沿海某城市A的正南方向220千米的B處有一臺(tái)風(fēng)中心,其中心最大風(fēng)力為12級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心20千米,風(fēng)力就會(huì)減弱一級(jí),該臺(tái)風(fēng)中心現(xiàn)在正以15千米/時(shí)的速度沿北偏東30°方向往C移動(dòng),且臺(tái)風(fēng)中心風(fēng)力不變,如圖,若城市所受風(fēng)力達(dá)到或超過4級(jí),則稱為受臺(tái)風(fēng)影響.

(1)該城市是否會(huì)受到這次臺(tái)風(fēng)的影響?請(qǐng)說明理由;

(2)若會(huì)受臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長(zhǎng)?該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王師傅常用角尺平分一個(gè)角,如圖所示,學(xué)生小明可用三角尺平分一個(gè)角,他們?cè)凇?/span>AOB兩邊上分別取OM、ON,使OMON,前者使角尺兩邊相同刻度分別與MN重合,角尺頂點(diǎn)為P;后者分別過MNOA、OB的垂線,交點(diǎn)為P,則均可得到△OMP≌△ONP,其依據(jù)分別是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名大學(xué)生去距學(xué)校36千米的某鄉(xiāng)鎮(zhèn)進(jìn)行社會(huì)調(diào)查.他們從學(xué)校出發(fā),騎電動(dòng)車行駛20分鐘時(shí)發(fā)現(xiàn)忘帶相機(jī),甲下車前往,乙騎電動(dòng)車按原路返回.乙取相機(jī)后(在學(xué)校取相機(jī)所用時(shí)間忽略不計(jì)),騎電動(dòng)車追甲.在距鄉(xiāng)鎮(zhèn)13.5千米處追上甲后同車前往鄉(xiāng)鎮(zhèn).乙電動(dòng)車的速度始終不變.設(shè)甲與學(xué)校相距y(千米),乙與學(xué)校相離y(千米),甲離開學(xué)校的時(shí)間為t(分鐘).y、yx之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

1)電動(dòng)車的速度為   千米/分鐘;

2)甲步行所用的時(shí)間為   分;

3)求乙返回到學(xué)校時(shí),甲與學(xué)校相距多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=cm,BAC=120°,點(diǎn)PBC上從CB運(yùn)動(dòng),點(diǎn)QAB、AC上沿B→A→C運(yùn)動(dòng),點(diǎn)P、Q分別從點(diǎn)C、B同時(shí)出發(fā),速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),則當(dāng)運(yùn)動(dòng)時(shí)間t=_____s時(shí),PAQ為直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案