【題目】在平面直角坐標(biāo)系中的位置如圖所示,先將向右平移3個單位,再向下平移1個單位到,和關(guān)于軸對稱.
(1)畫出和;
(2)在軸上確定一點,使的值最小,試求出點的坐標(biāo).
【答案】(1)詳見解析;(2)
【解析】
(1)△ABC向右平移3個單位,再向下平移1個單位到△A1B1C1,△A1B1C1和△A2B2C2關(guān)于x軸對稱,據(jù)此作圖即可;
(2)依據(jù)軸對稱的性質(zhì),連接BA2,交x軸于點P,此時BP+A1P的值最小,依據(jù)直線BA2的解析式,即可得到點P的坐標(biāo).
解:(1)如圖所示,△A1B1C1和△A2B2C2即為所求;
(2)如圖所示,連接BA2,交x軸于點P,則點P即為所求;
設(shè)直線BA2的解析式為,由B(-3,2),A2(3,-3)可得,
,解得
∴直線BA2的解析式為y=
當(dāng)y=0時,
解得
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:
①abc>0;②b2=4ac; ③4a+2b+c>0;④3a+c>0,
其中,正確的結(jié)論是______.(寫出正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=BD;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六張形狀大小完全相同的小長方形卡片,分兩種不同形式不重疊的放在一個底面長為m,寬為n的長方形盒子底部(如圖①、圖②),盒子底面未被卡片覆蓋的部分用陰影表示,設(shè)圖①中陰影圖形的周長為,圖②中兩個陰影部分圖形的周長和為 則用含m、n的代數(shù)式=_______,=_______,若,則m=_____(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點,作軸于點,將繞點逆時針旋轉(zhuǎn)得到.若點的坐標(biāo)為,,則點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠帶城中掛,人在畫中游”,張平和王亮同學(xué)周末相約騎行于“步移景異,心曠神怡”的溫江田園綠道,他們從同一地方同時騎自行車出發(fā)(騎行過程中速度保持不變),最后同時到達(dá)了同一個地方. 如圖刻畫了他們離出發(fā)點的路程(單位:米)與出發(fā)后的時間(單位:分鐘)之間的關(guān)系. 已知張平中途兩次休息時間相同,三段騎行時間也分別相同;王亮中途休息一次,兩段騎行時間相同. 張平總的休息時間比王亮的休息時間多分鐘. 請結(jié)合圖中信息解答下列問題:
(1)在這次騎行活動中,他們的騎行路程都是多少米?
(2)求出張平和王亮的騎行速度分別是多少米/分鐘?
(3)求出王亮出發(fā)后第一次追上張平的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由兩個長為8,寬為4的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15B.16C.19D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點D為直線AC上方拋物線上一動點;
①連接BC、CD,設(shè)直線BD交線段AC于點E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;
②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”n的各個數(shù)位上的數(shù)字之和記為F(n).例如n=135時,F(135)=1+3+5=9.
(1)對于“相異數(shù)”n,若F(n)=6,請你寫出一個n的值;
(2)若a,b都是“相異數(shù)”,其中a=100x+12,b=350+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當(dāng)F(a)+F(b)=18時,求k的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com