【題目】感知:如圖,在中,,點(diǎn)分別在邊上,連接點(diǎn)分別為的中點(diǎn),則的數(shù)量關(guān)系是:

探究:把繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn),如圖,連接

證明:

的度數(shù)為 _

應(yīng)用:把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若面積的最大值為___________

【答案】感知:;探究:詳見(jiàn)解析;;

【解析】

感知:由題意可得BD=CE,由三角形中位線可得BD=2PM,CE=2PN,可得PM=PN;

探究:(1)由“SAS”可證,由三角形中位線定理可得BD=2PM,CE=2PN,可得PM=PN;

2)由全等三角形的性質(zhì)可得∠ABD=ACE,由平行線的性質(zhì)可得∠BDE=MPE,∠BNP=BCE,由三角形外角性質(zhì)可求∠MPN=60°,可證△PMN是等邊三角形,即可求解;

應(yīng)用:先判斷出BD最大時(shí),△PMN的面積最大,而BD最大值是AB+AD=12,即可求解.

解:感知:∵AB=AC,AD=AE

BD=CE

BD=2PMCE=2PN

PM=PN

故答案為PM=PN.

探究:

證明:

(SAS)

點(diǎn)分別是的中點(diǎn),

點(diǎn)分別是的中點(diǎn)

2)∵

∴∠ABD=ACE

PM=PN

∴△PMN是等腰三角形

PMBD

∴∠DBE=MPE

PNBD

∴∠BNP=BCE

∵∠DBN=DBP+EBC=MPE+EBC

∴∠MPN=MPE+EPN=MPE+EBC+PNB=DBN+BCE=ABC+ABD+BCE=ABC+ACE+BCE=ABC+ACB

∴∠BAC=120°

∴∠ACB+ABC=60°

∴∠MPN=60°

∴△PMN是等邊三角形

∴∠PMN=60°

故答案為60°.

3)由(2)知△PMN是等邊三角形,PM=PN=BD

PM最大時(shí),△PMN面積最大,PM最小時(shí),△PMN面積最小

∴點(diǎn)DBA的延長(zhǎng)線上,△PMN的面積最大

BD=AB+AD=12

PM=6

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點(diǎn)A、B.點(diǎn)C的坐標(biāo)是(﹣1,0),拋物線yax2+bx﹣2經(jīng)過(guò)AC兩點(diǎn)且交y軸于點(diǎn)D.點(diǎn)Px軸上一點(diǎn),過(guò)點(diǎn)Px軸的垂線交直線AB于點(diǎn)M,交拋物線于點(diǎn)Q,連結(jié)DQ,設(shè)點(diǎn)P的橫坐標(biāo)為mm≠0).

(1)求點(diǎn)A的坐標(biāo).

(2)求拋物線的表達(dá)式.

(3)當(dāng)以B、DQ,M為頂點(diǎn)的四邊形是平行四邊形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,正,B(3,0)C(7,0),過(guò)點(diǎn)作直線,的橫坐標(biāo)(

A.4B.C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】奇異果是新西蘭的特產(chǎn),其實(shí)它的祖籍在中國(guó),又名獼猴桃20181月份至6月份我市某大型超市新西蘭品種的奇異果銷售價(jià)格y(/)與月份x(1≤x≤6,且x為整數(shù))之間的函數(shù)關(guān)系如下表:

7月份至12月份奇異果的銷售價(jià)格y(/)與月份x之間滿足函數(shù)關(guān)系式:y=2x+20(7≤x≤12x為整數(shù)).該超市去年奇異果銷售數(shù)量z()與月份x(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢(shì).若去年該超市奇異果的進(jìn)價(jià)為每盒20元,銷售奇異果需要一名超市員工,該員工每月固定人工費(fèi)用為1500元.

1)請(qǐng)觀察圖表中的數(shù)據(jù)信息直接寫出20181月份至6月份銷售價(jià)格yx之間的函數(shù)關(guān)系式__ ,根據(jù)如圖所示的變化趨勢(shì),直接寫出去年每月銷售數(shù)量zx之間滿足的函數(shù)關(guān)系式__

2)求出去年每月該超市的利潤(rùn)w()與月份x之間滿足的函數(shù)關(guān)系式.(利潤(rùn)=收入成本費(fèi)用)

3)從今年1月份開(kāi)始,超市決定每賣出一盒奇異果,公司向希望工程捐款2元,奇異果的進(jìn)價(jià)為每盒26元,雖然今年1月份奇異果的銷售價(jià)格比去年12月份增加4元,但1月份銷售數(shù)量仍比去年12月份增加了0.4a%;2月份銷售價(jià)格在1月份的基礎(chǔ)上增加了0.5a%,由于其它水果陸續(xù)上市,2月份的銷售量與1月份持平,這樣2月份的利潤(rùn)達(dá)到了15780元,請(qǐng)參考以下數(shù)據(jù),求出整數(shù)a的值.(參考數(shù)據(jù):=2025=2116,=2209)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.

1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個(gè)過(guò)程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時(shí)間x()之間的部分函數(shù)圖象如圖.

(1)A、B兩地相距____千米,甲的速度為____千米/分;

(2)求線段EF所表示的yx之間的函數(shù)表達(dá)式;

(3)當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需多少分鐘到達(dá)終點(diǎn)B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn),以為圓心作軸切于原點(diǎn),與軸的另一個(gè)交點(diǎn)為,過(guò)的切線

1)以直線為對(duì)稱軸的拋物線過(guò)點(diǎn)及點(diǎn),求次拋物線的解析式;

2)第(1)問(wèn)中的拋物線與軸的另一個(gè)交點(diǎn)為,過(guò)的切線為切點(diǎn),求此切線長(zhǎng);

3)點(diǎn)是切線DE上的一個(gè)動(dòng)點(diǎn),當(dāng)相似時(shí),求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共100件,其進(jìn)價(jià)和售價(jià)如下表:

商品名稱

進(jìn)價(jià)(/)

40

90

售價(jià)(/)

60

120

設(shè)其中甲種商品購(gòu)進(jìn)x件,商場(chǎng)售完這100件商品的總利潤(rùn)為y元.

()寫出y關(guān)于x的函數(shù)關(guān)系式;

()該商場(chǎng)計(jì)劃最多投入8000元用于購(gòu)買這兩種商品,

①至少要購(gòu)進(jìn)多少件甲商品?

②若銷售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點(diǎn),ABC=60°.若動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)出發(fā)沿著ABA方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0≤t<3),連接EF,當(dāng)t為_____s時(shí),BEF是直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案