【題目】試一試,找規(guī)律

如圖,用火柴棒擺三角形圖案,第1個(gè)圖形需要3根火柴棒,2個(gè)圖形需要5根火柴棒……

(1)按此規(guī)律,第5個(gè)圖案需要__________根火柴棒.

(2)n個(gè)圖案需要___________根火柴棒.

(3)如果用2019根火柴棒去擺,是第____________個(gè)圖案.

【答案】(1).11根;(2).(2n+1)根;(3).1009個(gè)圖案.

【解析】

1)根據(jù)前3個(gè)圖案的規(guī)律可求出第5個(gè)圖案需要的火柴棒的根數(shù);

2)根據(jù)(1)中規(guī)律總結(jié)即可;

3)根據(jù)(2)中結(jié)論求解即可.

1)∵第1個(gè)圖案需:1×2+1=3個(gè);

2個(gè)圖案需:2×2+1=5個(gè);

3個(gè)圖案需:3×2+1=7個(gè);

∴第4個(gè)圖案需:4×2+1=9個(gè);

5個(gè)圖案需:5×2+1=11個(gè);

2)由(1)知,第n個(gè)圖案需:n×2+1=(2n+1)個(gè);

3)由題意得

2n+1=2019,

解之得

n=1009.

故答案為:11,(2n+1),1009.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠A +∠B +∠C +∠D +∠E +∠F等于( )

A. 180° B. 360° C. 540° D. 720°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.

求證:CA+AD=BC.

小明為解決上面的問(wèn)題作了如下思考:作△ADC關(guān)于直線CD的對(duì)稱圖形△A′DC,

∵CD平分∠ACB,∴A′點(diǎn)落在CB上,且CA′=CA,A′D=AD.因此,要證的問(wèn)題轉(zhuǎn)化為只要證A′D=A′B.請(qǐng)根據(jù)小明的思考寫(xiě)出該問(wèn)題完整的證明過(guò)程.

(2)參照(1)中小明的思考方法,解答下列問(wèn)題:

如圖3,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家居專營(yíng)店用2730元購(gòu)進(jìn)AB兩種新型玻璃保溫杯共60個(gè),這兩種玻璃保溫杯的進(jìn)價(jià)、標(biāo)價(jià)如表所示

(1)這兩種玻璃保溫杯各購(gòu)進(jìn)多少個(gè)?

(2)A型玻璃保溫杯按標(biāo)價(jià)的9折出售B型玻璃保溫杯按標(biāo)價(jià)的8.5折出售,且在運(yùn)輸過(guò)程中有2個(gè)A型、1個(gè)B型玻璃保溫杯不慎損壞,不能進(jìn)行銷售,請(qǐng)問(wèn)這批玻璃保溫杯全部售出后,該家居專營(yíng)店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由一個(gè)邊長(zhǎng)為a的小正方形與兩個(gè)長(zhǎng)、寬分別為a,b的小長(zhǎng)方形拼接成大長(zhǎng)方形ABCD,則整個(gè)圖形可表達(dá)出一些有關(guān)多項(xiàng)式因式分解的等式,請(qǐng)你寫(xiě)出其中任意三個(gè)等式:__________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】P是⊙O外一點(diǎn),PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)C是劣弧AB上任意一點(diǎn),經(jīng)過(guò)點(diǎn)C作⊙O的切線,分別交PA、PB于點(diǎn)D、E.若PA=4,則△PDE的周長(zhǎng)是( 。
A.4
B.8
C.12
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一些棱長(zhǎng)均為2cm的小立方塊所搭幾何體從上面看到的形狀圖,小正方形中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).

(1)請(qǐng)畫(huà)出從正面和左面看到的這個(gè)幾何體形狀圖;

(2)這個(gè)幾何體的體積是 cm3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)有一塊空地需要綠化,某綠化組承擔(dān)了此項(xiàng)任務(wù),綠化組工作一段時(shí)間后,提高了工作效率,該綠化組完成的綠化面積 S(單位:m2)與工作時(shí)間 t(單位:h)之間的函數(shù)關(guān)系 如圖所示,則該綠化組提高工作效率前每小時(shí)完成的綠化面積是( 。

A. 150 m2 B. 300 m2 C. 330 m2 D. 450 m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線AB 一點(diǎn)O,以O為端點(diǎn)畫(huà)射線OC,作∠AOC的角平分線OD,作∠BOC的角平分線OE;

1)按要求完成畫(huà)圖;

2)通過(guò)觀察、測(cè)量你發(fā)現(xiàn)∠DOE= °;

3)補(bǔ)全以下證明過(guò)程:

證明:∵OD平分∠AOC(已知)

∴∠DOC= AOC

OE平分∠BOC(已知)

∴∠EOC= BOC

∵∠AOC+BOC= °

∴∠DOE=DOC+EOC= (∠AOC+BOC= °.

查看答案和解析>>

同步練習(xí)冊(cè)答案