如圖,在△ABC中,AB=BC,∠ABC=90°,BM是AC邊中線,點(diǎn)D,E分別在邊AC和BC上,DB=DE,EF⊥AC于點(diǎn)F,以下結(jié)論:

(1)∠DBM=∠CDE; (2)SBDE<S四邊形BMFE;

(3)CD•EN=BN•BD; (4)AC=2DF.

其中正確結(jié)論的個(gè)數(shù)是( 。

  A. 1 B. 2 C. 3 D. 4


C. 解:(1)設(shè)∠EDC=x,則∠DEF=90°﹣x

∴∠DBE=∠DEB=∠EDC+∠C=x+45°,

∵BD=DE,

∴∠DBM=∠DBE﹣∠MBE=45°+x﹣45°=x.

∴∠DBM=∠CDE,故(1)正確;

(2)在Rt△BDM和Rt△DEF中,

,

∴Rt△BDM≌Rt△DEF.

∴SBDM=SDEF

∴SBDM﹣SDMN=SDEF﹣SDMN,即SDBN=S四邊形MNEF

∴SDBN+SBNE=S四邊形MNEF+SBNE

∴SBDE=S四邊形BMFE,故(2)錯(cuò)誤;

(3)∵∠BNE=∠DBM+∠BDN,∠BDM=∠BDE+∠EDF,∠EDF=∠DBM,

∴∠BNE=∠BDM.

又∵∠C=∠NBE=45°

∴△DBC∽△NEB.

∴CD•EN=BN•BD;故(3)正確;

(4)∵Rt△BDM≌Rt△DEF,

∴BM=DF,

∵∠B=90°,M是AC的中點(diǎn),

∴BM=

∴DF=,故(4)正確.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC=8,BD=6,OE⊥BC,垂足為點(diǎn)E,則OE=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一組數(shù)1,1,2,x,5,y,…,滿足“從第三個(gè)數(shù)起,每個(gè)數(shù)都等于它前面的兩個(gè)數(shù)之和”,那么這組數(shù)中y表示的數(shù)為

A.8      B.9      C.13       D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某商店以40元/千克的單價(jià)新進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量y(千克)與銷售單價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象求yx的函數(shù)關(guān)系式;

(2)商店想在銷售成本不超過3000元的情況下,使銷售利潤(rùn)達(dá)到2400元,銷售單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


學(xué)校組織校外實(shí)踐活動(dòng),安排給九年級(jí)三輛車,小明與小紅都可以從這三輛車中任選一輛搭乘,小明與小紅同車的概率是(  )

  A.  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,若AB=8,CD=6,則BE= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(﹣1,0),B(3,0).請(qǐng)解答下列問題:

(1)求拋物線的解析式;

(2)點(diǎn)E(2,m)在拋物線上,拋物線的對(duì)稱軸與x軸交于點(diǎn)H,點(diǎn)F是AE中點(diǎn),連接FH,求線段FH的長(zhǎng).

注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省九年級(jí)下學(xué)期第一次學(xué)情調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

已知點(diǎn)位于第二象限,并且,、為整數(shù),若以為圓心,為半徑畫圓,則可以畫出 個(gè)半徑不同的圓來。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市江都區(qū)七校聯(lián)誼九年級(jí)3月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)中自變量x的取值范圍是( )

A.x≥-3 B.x≥-3且x≠1 C.x≠1 D.x≠-3且x≠1

查看答案和解析>>

同步練習(xí)冊(cè)答案