【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點F,過點F作DE∥BC,分別交AB、AC于點D、E,那么下列結(jié)論:①△BDF和△CEF都是等腰三角形;②F為DE中點;③△ADE的周長等于AB與AC的和;④BF=CF.其中正確的有( )
A.①③B.①②③C.①②D.①④
【答案】A
【解析】
由平行線得到角相等,由角平分線得角相等,根據(jù)平行線的性質(zhì)及等腰三角形的判定和性質(zhì)逐項分析可得解.
∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵△ABC中,∠ABC與∠ACB的平分線交于點F,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF,EF=EC,
即△BDF和△CEF都是等腰三角形;
故①正確;
∵BD與CE無法判定相等,
∴DF與EF無法判定相等,
故②錯誤;
∴△ADE的周長為:AD+DE+AE=AB+BD+CE+AE=AB+AC;
故③正確;
∵∠ABC不一定等于∠ACB,
∴∠FBC不一定等于∠FCB,
∴BF與CF不一定相等,
故④錯誤.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,BD是它的一條對角線,過A、C兩點作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。
(1)求證:四邊形CMAN是平行四邊形。
(2)已知DE=4,F(xiàn)N=3,求BN的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAD=∠CAD,則下列條件中不一定能使△ABD≌△ACD的是( 。
A.∠B=∠CB.∠BDA=∠CDAC.AB=ACD.BD=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(0,4)、(4,0),點C在第一象限內(nèi),∠BAC=90°,AB=2AC,函數(shù)y=(x>0)的圖象經(jīng)過點C,將△ABC沿x軸的正方向向右平移m個單位長度,使點A恰好落在函數(shù)y=(x>0)的圖象上,則m的值為( 。
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點D在BC邊上,點E在AB的延長線上,將DE繞D點順時針旋轉(zhuǎn)120°得到DF.
(1)如圖1,若點F恰好落在AC邊上,求證:點D是BC的中點;
(2)如圖2,在(1)的條件下,若=45°,連接AD,求證:;
(3)如圖3,若,連CF,當(dāng)CF取最小值時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若△BCE的面積為4,則k=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點O與坐標(biāo)原點重合,邊OA、OC分別在x軸、y軸的正半軸上,點B、P都在函數(shù)y=(x>0)的圖象上,過動點P分別作軸x、y軸的平行線,交y軸、x軸于點D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點P的橫坐標(biāo)為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長;
(3)求S與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)在一次消防演習(xí)中,消防員架起一架25米長的云梯AB,如圖斜靠在一面墻上,梯子底端B離墻角C的距離為7米。
(1)求這個梯子的頂端距地面的高度AC是多少?
(2)如果消防員接到命令,按要求將梯子底部在水平方向滑 動后停在DE的位置上(云梯長度不變),測得BD長為8米,那么云梯的頂部在下滑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E 是 BC 的中點,DE 平分∠ADC.
(1)如圖 1,若∠B=∠C=90°,求證:AE 平分∠DAB;
(2)如圖 2,若 DE⊥AE,求證:AD=AB+CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com