【題目】甲、乙兩人以各自的交通工具、相同路線,前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l、l分別表示甲、乙前往目的地所走的路程Skm)隨時(shí)間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②乙走了8km后遇到甲;③乙出發(fā)6分鐘后追上甲;④甲走了28分鐘時(shí),甲乙相距3km.其中正確的是( 。

A. 只有① B. ①③ C. ②③④ D. ①③④

【答案】D

【解析】

觀察函數(shù)圖象可知,函數(shù)的橫坐標(biāo)表示時(shí)間,縱坐標(biāo)表示路程,然后根據(jù)圖象上特殊點(diǎn)的意義進(jìn)行解答.

解:①乙在28分時(shí)到達(dá),甲在40分時(shí)到達(dá),所以乙比甲提前了12分鐘到達(dá);故①正確;

④根據(jù)甲到達(dá)目的地時(shí)的路程和時(shí)間知:甲的平均速度=10÷15(千米/時(shí)),

∴甲走了28分鐘時(shí)走了15×7千米,

∴甲乙相距3千米;故④正確;

③設(shè)乙出發(fā)x分鐘后追上甲,則有:×x×18+x),解得x6,故③正確;

②乙第一次遇到甲時(shí),所走的距離為:6km),故②錯(cuò)誤;

所以正確的結(jié)論的是①③④,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)三角形和一個(gè)矩形按照如圖的方式擴(kuò)大,使他們的對(duì)應(yīng)邊之間的距離均為1,得到新的三角形和矩形,下列說法正確的是 (
A.新三角形與原三角形相似
B.新矩形與原矩形相似
C.新三角形與原三角形、新矩形與原矩形都相似
D.都不相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)),其順序按圖中方向排列,如(1,0),(2,0),(2,1)(3,1),(30)…… 根據(jù)這個(gè)規(guī)律探索可得,第50個(gè)點(diǎn)的坐標(biāo)為(

A. (10,-5)B. (10,-1) C. (10,0) D. (10,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動(dòng)至點(diǎn),第二次點(diǎn)跳動(dòng)至點(diǎn)第三次點(diǎn)跳動(dòng)至點(diǎn),第四次點(diǎn)跳動(dòng)至點(diǎn)……,依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAB邊上任意一點(diǎn),∠CDE=60°,DE與∠ABC外角平分線相交于點(diǎn)E.

(1)求證:CD=DE;

(2)DAB延長線上任意一點(diǎn),∠CDE=60°,DE與∠ABC外角平分線相交于點(diǎn)E.請(qǐng)畫出圖形,判斷CD=DE是否還成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)研究發(fā)現(xiàn),空氣含氧量y(克/立方米)與海拔高度x(米)之間近似地滿足一次函數(shù)關(guān)系.經(jīng)測量,在海拔高度為1000米的地方,空氣含氧量約為267克/立方米;在海拔高度為2000米的地方,空氣含氧量約為235克/立方米.

(1)求出y與x的函數(shù)表達(dá)式;

(2)求出海拔高度為0米的地方的空氣含氧量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究發(fā)現(xiàn))

如圖1,在△ABC中,點(diǎn)P是內(nèi)角∠ABC和外角∠ACD的角平分線的交點(diǎn),試猜想∠P與∠A之間的數(shù)量關(guān)系,并證明你的猜想.

(遷移拓展)

如圖2,在△ABC中,點(diǎn)P是內(nèi)角∠ABC和外角∠ACD的n等分線的交點(diǎn),即∠PBC=∠ABC,∠PCD=∠ACD,

試猜想∠P與∠A之間的數(shù)量關(guān)系,并證明你的猜想.

(應(yīng)用創(chuàng)新)

已知,如圖3,AD、BE相交于點(diǎn)C,∠ABC、∠CDE、∠ACE的角平分線交于點(diǎn)P,∠A=35°,∠E=25°,則∠BPD=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)已知四邊形ABCD是矩形,對(duì)角線AC和BD相交于點(diǎn)P,若在矩形的上方加一個(gè)DEA,且使DEAC,AEBD

(1)求證:四邊形DEAP是菱形

(2)若AE=CD,求DPC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.

(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,若四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)聯(lián)接BC交x軸于點(diǎn)F.y軸上是否存在點(diǎn)P,使得△POC與△BOF相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案