如圖,AB是自動(dòng)噴灌設(shè)備的水管,點(diǎn)A在地面,點(diǎn)B高出地面1.5米.在B處有一自動(dòng)旋轉(zhuǎn)的噴水頭,在每一瞬間,噴出的水流呈拋物線狀,噴頭B與水流最高點(diǎn)C的連線與水平線成45°角,水流的最高點(diǎn)C與噴頭B高出2米,在如圖的坐標(biāo)系中,水流的落地點(diǎn)D到點(diǎn)A的距離是______米.
如圖,建立直角坐標(biāo)系,過C點(diǎn)作CE⊥y軸于E,過C點(diǎn)作CF⊥x軸于F,
∴B(0,1.5),
∴∠CBE=45°,
∴EC=EB=2米,
∵CF=AB+BE=2+1.5=3.5,
∴C(2,3.5)
設(shè)拋物線解析式為:y=a(x-2)2+3.5,
又∵拋物線過點(diǎn)B,
∴1.5=a(0-2)2+3.5
∴a=-
1
2

∴y=-
1
2
(x-2)2+3.5=-
1
2
x2+2x+
3
2
,
∴所求拋物線解析式為:y=-
1
2
x2+2x+
3
2
,
∵拋物線與x軸相交時(shí),y=0,
0=-
1
2
x2+2x+
3
2

x1=2+
7
,x2=2-
7
(舍去)
∴D( 2+
7
,0)
∴水流落點(diǎn)D到A點(diǎn)的距離為:2+
7
米.
故答案為:2+
7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)中,拋物線的頂點(diǎn)P到x軸的距離是4,拋物線與x軸相交于O、M兩點(diǎn),OM=4;矩形ABCD的邊BC在線段的OM上,點(diǎn)A、D在拋物線上.
(1)請寫出P、M兩點(diǎn)坐標(biāo),并求出這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請判斷在拋物線上是否存在點(diǎn)Q(除點(diǎn)M外),使得△OPQ也是等腰三角形,簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(1)將拋物線y1=2x2向右平移2個(gè)單位,得到拋物線y2的圖象,則y2=______;
(2)如圖,P是拋物線y2對稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的最小值是5
3
4
,且a:b:c=2:3:4,則a=______,b=______,c=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABDC,AB=2,DC=10,AD=BC=5,點(diǎn)M、N分別在AD、BC上運(yùn)動(dòng),并保持MNAB,ME⊥DC,NF⊥DC,垂足分別為E、F.
(1)求梯形ABCD的面積;
(2)探究一:四邊形MNFE的面積有無最大值?若有,請求出這個(gè)最大值;若無,請說明理由;
(3)探究二:四邊形MNFE能否為正方形?若能,請求出正方形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)E(x1,y1)、F(x2,y2)在拋物線y=ax2+bx+c的對稱軸的同側(cè)(點(diǎn)E在點(diǎn)F的左側(cè)),過點(diǎn)E、F分別作x軸的垂線,分別交x軸于點(diǎn)B、D,交直線y=2ax+b于點(diǎn)A、C,設(shè)S為直線AB、CD與x軸、直線y=2ax+b所圍成圖形的面積.則S與y1、y2的數(shù)量關(guān)系式為:S=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商家經(jīng)銷一種綠茶,已知綠茶每千克成本50元,在試銷時(shí)間內(nèi)發(fā)現(xiàn):
單價(jià)定為每千克70元時(shí),月銷售量為l00千克,銷售單價(jià)每提高5元,月銷量減少10,設(shè)該綠茶的銷售單價(jià)為每千克x元(x≥70),月銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)若用于裝修門面已投資3000元,該商家在第一個(gè)月里,銷售單價(jià)為每千克85元,在第二個(gè)月里受物價(jià)部門干預(yù),銷售單價(jià)不得高于90元,在第二個(gè)月銷售結(jié)束后發(fā)現(xiàn)這兩個(gè)月不僅收回投資,而且剛好獲得1700元的利潤,求第二個(gè)月時(shí)該綠茶的銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設(shè)點(diǎn)A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點(diǎn),其中m>0,且△OAB的面積為4,O為原點(diǎn),求圖象過A,B兩點(diǎn)的一次函數(shù)的特征數(shù).

查看答案和解析>>

同步練習(xí)冊答案