【題目】兩輛汽車(chē)沿同一條路趕赴距離的某景區(qū).甲勻速行駛一段時(shí)間出現(xiàn)故障,停車(chē)檢修后繼續(xù)行駛.圖中折線、線段分別表示甲、乙兩車(chē)所行的路程與甲車(chē)出發(fā)時(shí)間之間的關(guān)系,則下列結(jié)論中正確的個(gè)數(shù)是( )①甲車(chē)比乙車(chē)早出發(fā)2小時(shí);②圖中的;③兩車(chē)相遇時(shí)距離目的地;④乙車(chē)的平均速度是;⑤甲車(chē)檢修后的平均速度是

A.1B.2C.3D.4

【答案】B

【解析】

圖形中橫坐標(biāo)表示兩車(chē)所用的時(shí)間,縱坐標(biāo)表示兩車(chē)行駛的路程,結(jié)合題中的已知條件,分別分析判斷即可得.

由圖可知,乙車(chē)比甲車(chē)晚出發(fā)3h,所以①錯(cuò)誤;

直線DE經(jīng)過(guò)點(diǎn)(3,0)(8,500),則此直線的解析式為,因此點(diǎn)F的坐標(biāo)為(6,300)500-300=200,所以③正確;由點(diǎn)F(6,300),C(9,500)可得直線BC的解析式為,據(jù)此可求出點(diǎn)B的坐標(biāo)為,,,所以②錯(cuò)誤;乙車(chē)的平均速度為,所以④正確;甲車(chē)檢修后的平均速度為,所以⑤錯(cuò)誤.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是線段AB的垂直平分線,則∠CAD=CBD.請(qǐng)說(shuō)明理由:

解:∵ CD是線段AB的垂直平分線

AC=BC,AD=DB

ADCBDC中,

ADC≌和BDC( .

CAD=CBD .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.

(1)求第二個(gè)方程的解;

(2)求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)過(guò)點(diǎn)A(3,4),直線ACx軸交于點(diǎn)C(6,0),過(guò)點(diǎn)Cx軸的垂線BC交反比例函數(shù)圖象于點(diǎn)B.

(1)求k的值與B點(diǎn)的坐標(biāo);

(2)在平面內(nèi)有點(diǎn)D,使得以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,試寫(xiě)出符合條件的所有D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對(duì)角線AC、BD應(yīng)滿足條件__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:如果兩個(gè)一次函數(shù)的一次項(xiàng)系數(shù)和常數(shù)項(xiàng)互換,即y=kx+by=bx+k(其中|k|≠|(zhì)b|),稱這樣的兩個(gè)一次函數(shù)為互助一次函數(shù),例如就是互助一次函數(shù).根據(jù)規(guī)定解答下列問(wèn)題:

1)填空:一次函數(shù)與它的互助一次函數(shù)的交點(diǎn)坐標(biāo)為______

2)若兩個(gè)一次函數(shù)y=k-bx k - 2b是互助一次函數(shù),求兩函數(shù)圖象與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線BCD表示轎車(chē)離甲地距離y(千米)與x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:

(1)轎車(chē)到達(dá)乙地后,貨車(chē)距乙地多少千米?

(2)求線段CD對(duì)應(yīng)的函數(shù)解析式.

(3)轎車(chē)到達(dá)乙地后,馬上沿原路以CD段速度返回,求貨車(chē)從甲地出發(fā)后多長(zhǎng)時(shí)間再與轎車(chē)相遇(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GMx軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對(duì)稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點(diǎn)T,使TAC是等腰三角形?若存在,請(qǐng)求出所有點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)P為拋物線y1上一動(dòng)點(diǎn),過(guò)點(diǎn)Py軸的平行線交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對(duì)稱點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動(dòng)點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).

(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;

(2)在動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C過(guò)程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;

(3)如圖(2),另有一動(dòng)點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C,過(guò)點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案