【題目】如圖,在△ABC中,AC=CB,O是AB的中點,CA與⊙O相切于點E,CO交⊙O于點D
(1)求證:CB是⊙O的切線;
(2)若∠ACB=80°,點P是⊙O上一個動點(不與D,E兩點重合),求∠DPE的度數(shù).
【答案】(1)詳見解析;(2)∠DPE的度數(shù)為25°或155°.
【解析】
(1)經過半徑的外端且垂直于這條半徑的直線是圓的切線,據(jù)此進行判斷.
(2)依據(jù)∠ACB=80°,OC平分∠ACB,可得∠ACO=40°,∠DOE=90°-40°=50°,分兩種情況:當點P在優(yōu)弧弧DPE上時,∠DPE=∠DOE=25°;當點P在劣弧弧DE上時,∠DPE=180°-25°=155°.
解:(1)如圖1所示,連接OE,過O作OF⊥BC于F,
∵CA與⊙O相切于點E,
∴OE⊥AC,
∵△ABC中,AC=CB,O是AB的中點,
∴OC平分∠ACB,
∴OE=OF,
又∵OE是⊙O的半徑,
∴CB是⊙O的切線;
(2)如圖2,∵∠ACB=80°,OC平分∠ACB,
∴∠ACO=40°,
又∵OE⊥AC,
∴∠DOE=90°﹣40°=50°,
當點P在優(yōu)弧 上時,∠DPE=∠DOE=25°;
當點P在劣弧上時,∠DPE=180°﹣25°=155°.
∴∠DPE的度數(shù)為25°或155°.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,⊙A與y軸交于C、D兩點,圓心A的坐標為(1,0),⊙A的半徑為,過點C作⊙A的切線交x軸于點B(-4,0).
(1)求切線BC的解析式;
(2)若點P是第一象限內⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )
A. B. C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天上午7:30,小芳在家通過滴滴打車軟件打車前往動車站搭乘當天上午8:30的動車.記汽車的行駛時間為t小時,行駛速度為v千米/小時(汽車行駛速度不超過60千米/小時).根據(jù)經驗,v,t的一組對應值如下表:
V(千米/小時) | 20 | 30 | 40 | 50 | 60 |
T(小時) | 0.6 | 0.4 | 0.3 | 0.25 | 0.2 |
(1)根據(jù)表中的數(shù)據(jù)描點,求出平均速度v(千米/小時)關于行駛時間t(小時)的函數(shù)表達式;
(2)若小芳從開始打車到上車用了10分鐘,小芳想在動車出發(fā)前半小時到達動車站,若汽車的平均速度為32千米/小時,小芳能否在預定的時間內到達動車站?請說明理由;
(3)若汽車到達動車站的行駛時間t滿足0.3<t<0.5,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校實行學案式教學,需印制若干份教學學案.印刷廠有,甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要,兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關系如圖所示.
(1)填空:甲種收費方式的函數(shù)關系式是__________,乙種收費方式的函數(shù)關系式是__________.
(2)該校某年級每次需印制100~450(含100和450)份學案,選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=6,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)求點O到直線DE的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國傳統(tǒng)數(shù)學重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.《九章算術》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個圓柱截面示意圖(如圖②),其中BO⊥CD于點A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運用有關知識即可解決這個問題.請你補全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,現(xiàn)要在AB上建一個中轉站E,使得C、D兩村到E站的距離相等.求E應建在距A多遠處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】楊梅是漳州的特色時令水果.楊梅一上市,水果店的老板用1200元購進一批楊梅,很快售完;老板又用2500元購進第二批楊梅,所購件數(shù)是第一批的2倍,但進價每件比第一批多了5元.
(1)第一批楊梅每件進價多少元?
(2)老板以每件150元的價格銷售第二批楊梅,售出后,為了盡快售完,決定打折促銷.要使得第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折(利潤售價進價)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com