【題目】如圖,△ABC中,∠BAC=110°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.
(1)求∠DAF的度數(shù);
(2)如果BC=10cm,求△DAF的周長.
【答案】(1)20°(2)10
【解析】試題分析:(1)先根據(jù)三角形內(nèi)角和定理求出∠B+∠C,再根據(jù)等邊對等角的性質(zhì)可得∠BAD=∠B,∠CAF=∠C,然后代入數(shù)據(jù)進行計算即可得解;
(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì)可得AD=BD,AF=CF,然后求出△ADF周長等于BC,從而得解.
試題解析:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,
∵DE、FGQ分別是AB、AC的垂直平分線,∴AD=BD,AF=CF,∴∠BAD=∠B,∠CAF=∠C,
∴∠DAF=∠BAC﹣∠BAD﹣∠CAF=∠BAC﹣∠B﹣∠C=110°﹣70°=40°;
(2)∵DE、FGQ分別是AB、AC的垂直平分線,∴AD=BD,AF=CF,
∴△ADF周長=AD+DF+AF=BD+DF+FC=BC,
∵BC=10,∴△APQ周長=10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D是AC邊上一動點,CE⊥BD于E.
(1)如圖(1),若BD平分∠ABC時,①求∠ECD的度數(shù);②延長CE交BA的延長線于點F,補全圖形,探究BD與EC的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖(2),過點A作AF⊥BE于點F,猜想線段BE,CE,AF之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是某校九年級10名同學參加學校演講比賽的統(tǒng)計表,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別為()
成績/分 | 80 | 85 | 90 | 95 |
人數(shù)/人 | 1 | 3 | 4 | 2 |
A.90,87.5B.85,84C.85,90D.90,90
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE中,AB=AD,AC=AE, ∠BAC=∠DAE,BC交
DE于點O,∠BAD=a.
(1)求證:∠BOD=a.
(2)若AO平分∠DAC, 求證:AC=AD.
(3)若∠C=30°,OE交AC于F,且△AOF為等腰三角形,則a= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2).
(1)寫出點A、B的坐標:A( , )、B( , );
(2)求△ABC的面積;
(3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,畫出△A′B′C′,寫出A′、B′、C′三個點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com