【題目】已知:在△ABC中,AH⊥BC,垂足為點(diǎn)H,若AB+BH=CH,∠ABH=70°,則∠BAC=_____°.
【答案】75°或35°
【解析】
分析題意,可知本題需分兩種情況進(jìn)行討論,△ABC為銳角三角形和△ABC為直角三角形;
當(dāng)△ABC為鈍角三角形時(shí),過A作BC的垂線,交CB的延長(zhǎng)線于點(diǎn)H,由AB+BH=CH,不難得出AB=BC,接下來,再利用三角形外角的性質(zhì),可得∠BAC的度數(shù);
當(dāng)△ABC為銳角三角形時(shí),在HC上取D點(diǎn),使BH=HD,連接AD,再結(jié)合AB+BH=CH,不難得出AD=DC,接下來,再利用三角形外角的性質(zhì),可得∠DAC的度數(shù);
由∠ABH=70°,利用等腰三角形的性質(zhì)可得出∠BAD的度數(shù),結(jié)合上述所得,可得∠BAC的度數(shù).
根據(jù)題意畫出圖形,
當(dāng)△ABC為鈍角三角形時(shí),過A作BC的垂線,交CB的延長(zhǎng)線于點(diǎn)H,
∵AB+BH=CH,HB+BC=CH,
∴AB=BC,
∴∠BAC=∠ACB.
∵∠ABH=70°,
∴∠BAC=∠ACB=35°.
當(dāng)△ABC為銳角三角形時(shí),在HC上取D點(diǎn),使BH=HD,連接AD,
∵AB+BH=HC=HD+DC,BH=HD,
∴AB=DC.
∵AH⊥BD,BH=HD,
∴AB=AD,
∴∠B=∠ADH=70°,
∴∠BAD=40°.
∵AB=DC,AB=AD,
∴AD=CD,
∴∠C=∠DAC,
∴∠ADH=∠C+∠DAC=2∠C,
∴∠DAC=35°,
∴∠BAC=∠BAD+∠DAC=40°+35°=75°.
故答案為:75°或35°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓, ,點(diǎn)D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于點(diǎn)B、D,直線y=與x軸、y軸分別交于點(diǎn)C、E,且兩條直線交于點(diǎn)A.
(1)若OH⊥CE于點(diǎn)H,求OH的長(zhǎng).
(2)求四邊形ABOE的面積.
(3)如圖(2),已知點(diǎn)F(﹣ ,0),在△ABC的邊上取兩點(diǎn)M、N,是否存在以點(diǎn)O,M,N為頂點(diǎn)的三角形與△OFM全等,且兩個(gè)三角形在邊OM的異側(cè)?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.(溫馨提示:若點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),則線段AB的中點(diǎn)坐標(biāo)為(,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△ADC,連接OD.當(dāng)AO=5,BO=4,α=150°時(shí),則CO的長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)+1的整數(shù)部分為m,小數(shù)部分為n.
(1)求m,n的值;
(2)在平面直角坐標(biāo)系中,試判斷點(diǎn)(m﹣1,n﹣1)位于第幾象限;
(3)若m,n+1為一個(gè)直角三角形的斜邊與一條直角邊的長(zhǎng),求這個(gè)直角三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1.且過點(diǎn)( ,0),有下列結(jié)論:①abc>0;
②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0; ⑤a﹣b≥m(am﹣b);
其中所有正確的結(jié)論是( )
A.①②③
B.①③④
C.①②③⑤
D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在云南省某市中小學(xué)生“我的中國(guó)夢(mèng)”讀書活動(dòng)中,某校對(duì)部分學(xué)生做了一次主題為:“我最喜愛的圖書”的調(diào)查活動(dòng),將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛好任選其中一類.學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并繪制了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
你結(jié)合圖中信息,解答下列問題:
(1)本次共調(diào)查了名學(xué)生;
(2)被調(diào)查的學(xué)生中,最喜愛丁類圖書的學(xué)生有人,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的%;扇形統(tǒng)計(jì)圖中甲類部分的圓心是 .
(3)在最喜愛丙類圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校共有學(xué)生2400人,請(qǐng)你估計(jì)該校最喜愛丙類圖書的女生和男生分別有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com