一張圓形紙片,小芳進(jìn)行了如下連續(xù)操作:
⑴.將圓形紙片左右對(duì)折,折痕為AB,如圖(2)所示.
⑵.將圓形紙片上下折疊,使A、B兩點(diǎn)重合,折痕CD與AB相交于M,如圖(3)所示.
⑶.將圓形紙片沿EF折疊,使B、M兩點(diǎn)重合,折痕EF與AB相交于N,如圖(4)所示.
⑷.連結(jié)AE、AF,如圖(5)所示.
經(jīng)過以上操作小芳得到了以下結(jié)論:①. CD∥EF  ②.四邊形 MEBF是菱形 
③. △AEF為等邊三角形 ④.,以上結(jié)論正確的有(      )

A.1個(gè)          B.2個(gè)          C.3個(gè)         D.4個(gè)
D

試題分析::因?yàn)閳D形屬于對(duì)稱折疊,所以CD∥EF,同時(shí)可知MN=BN,EN=NF,垂直且平分,.所以,四邊形 MEBF是菱形,因?yàn)锳N垂直平分EF,所以△AEF為等邊三角形,,故正確的選項(xiàng)是4個(gè),故選D
點(diǎn)評(píng):本題屬于對(duì)圖形的基本折疊以及圖形的面積和菱形的判定定理的考查和運(yùn)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將邊長(zhǎng)OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在軸和y軸上.在OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊。

(1)如圖①,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為           ;
(2)如圖②,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過點(diǎn)EEG軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EHCH;
(3)在(2)的條件下,設(shè)Hm,n),寫出mn之間的關(guān)系式                           
(4)如圖③,將矩形OABC變?yōu)檎叫危?i>OC=10,當(dāng)點(diǎn)EAO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長(zhǎng)CDAB于點(diǎn)T,求此時(shí)AT的長(zhǎng)度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一副三角板按如圖方式擺放,其中ABDE, 那么∠CDF=   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形是中心對(duì)稱圖形的是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC中,AC=BC=8,∠ACB=90°,D是直線AC上一點(diǎn),CD:AC=1:2,折疊△ABC,使B落在D點(diǎn)上,則折痕長(zhǎng)為                        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是(    ). 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,原來是重疊的兩個(gè)直角三角形,將其中一個(gè)三角形沿BC方向平移BE的距離,就得到此圖形,求陰影部分面積(單位:厘米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A、B、C、D、O都在方格紙的格點(diǎn)上,若△COD是由△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)而得,
則旋轉(zhuǎn)的角度為

A、30°    B、45°    C、90°    D、135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在4×4的正方形網(wǎng)格中,△MNP繞某點(diǎn)旋轉(zhuǎn)一定的角度,得到△M1N1P1.則其旋轉(zhuǎn)中心一定是點(diǎn) (   )
A.A點(diǎn)B.B點(diǎn)C.C點(diǎn)D.D點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案