一圓錐的底面半徑是2,母線長為6,此圓錐側(cè)面展開圖扇形的圓心角的度數(shù)為(    )
A.90°B.120°C.150°D.180°
B

試題分析:先根據(jù)圓的周長公式求得圓錐側(cè)面展開圖扇形的弧長,再根據(jù)弧長公式即可求得結(jié)果.
由題意得,解得
故選B.
點評:解題的關(guān)鍵是熟練掌握弧長公式:,注意在使用公式時度不帶單位.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O的半徑為3cm,圓心O到直線l的距離是4cm,則直線l與⊙O的位置關(guān)系是  .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過格點A、B、C

(1)請找出該圓弧所在圓的圓心O的位置;
(2)請在(1)的基礎(chǔ)上,完成下列問題:
①⊙O的半徑為_______(結(jié)果保留根號);
的長為_________(結(jié)果保留π);
③試判斷直線CD與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知在正方形的網(wǎng)格中,網(wǎng)線的交點稱為格點,如圖,點A、B、C都是格點.每個小正方形的邊長為1個單位長度,若在網(wǎng)格中建立坐標(biāo)系,則A的坐標(biāo)為(-1,3),B的坐標(biāo)為(1,3),C的坐標(biāo)為(3,1).

(1)利用正方形網(wǎng)格,作過A、B、C三點的圓,并寫出圓心O的坐標(biāo);
(2)在(1)中所作的⊙O外,在這8×8的網(wǎng)格中找到一個格點P,作△PAC,使得△PAC的面積與△ABC的面積相等,并寫出點P的坐標(biāo).(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中∠C=90°,∠A=30°在AC邊上取點O畫圓使⊙O經(jīng)過A、B兩點,下列結(jié)論中:①;②;③以O(shè)為圓心,以O(shè)C為半徑的圓與AB相切;④延長BC交⊙O與D,則A、B、D是⊙O的三等分點.正確的序號是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A、C分別在y軸、x軸上,以AB為弦的⊙M與x軸相切.若點A的坐標(biāo)為(0, 8),則圓心M的坐標(biāo)為 (      )

A.(-4,5)        B.(-5,4)         C.( -4,6)      D.( -5,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知正方形ABCD的對角線AC長為20cm,半徑為1的⊙O1的圓心O1從A點出發(fā)以1cm/s的速度向C運動,半徑為1的⊙O2的圓心O2從C點出發(fā)以2cm/s的速度向A運動且半徑同時也以1cm/s的速度不斷增大,兩圓同時運動,當(dāng)其中一個圓的圓心運動到AC的端點時,另一個圓也停止運動.

(1)當(dāng)O1運動了幾秒時,⊙O1與AD相切?
(2)當(dāng)O2運動了幾秒時,⊙O2與CB相切?
(3)當(dāng)O2運動了幾秒時,⊙O1與⊙O2相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB、CD為⊙O的兩條弦,AB=CD.求證:∠AOC=∠BOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

兩圓半徑分別是1和2,當(dāng)兩圓外離時,這兩圓的圓心距d的取值范圍是         .

查看答案和解析>>

同步練習(xí)冊答案