【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.

(Ⅰ)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(Ⅱ)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(Ⅲ)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在坐標(biāo)平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)寫出點(diǎn)Q的坐標(biāo).

【答案】解:(Ⅰ)把B、C兩點(diǎn)坐標(biāo)代入拋物線解析式可得 ,解得
∴拋物線解析式為y=﹣ x2+2x+6,
∵y=﹣ x2+2x+6=﹣ (x﹣2)2+8,
∴D(2,8);
(Ⅱ)如圖1,過F作FG⊥x軸于點(diǎn)G,

設(shè)F(x,﹣ x2+2x+6),則FG=|﹣ x2+2x+6|,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,
∴△FBG∽△BDE,
= ,
∵B(6,0),D(2,8),
∴E(2,0),BE=4,DE=8,OB=6,
∴BG=6﹣x,
= ,
當(dāng)點(diǎn)F在x軸上方時(shí),有 = ,解得x=﹣1或x=6(舍去),此時(shí)F點(diǎn)的坐標(biāo)為(﹣1, );
當(dāng)點(diǎn)F在x軸下方時(shí),有 =﹣ ,解得x=﹣3或x=6(舍去),此時(shí)F點(diǎn)的坐標(biāo)為(﹣3,﹣ );
綜上可知F點(diǎn)的坐標(biāo)為(﹣1, )或(﹣3,﹣ );
(Ⅲ)如圖2,設(shè)對(duì)稱軸MN、PQ交于點(diǎn)O′,

∵點(diǎn)M、N關(guān)于拋物線對(duì)稱軸對(duì)稱,且四邊形MPNQ為正方形,
∴點(diǎn)P為拋物線對(duì)稱軸與x軸的交點(diǎn),點(diǎn)Q在拋物線的對(duì)稱軸上,
設(shè)Q(2,2n),則M坐標(biāo)為(2﹣n,n),
∵點(diǎn)M在拋物線y=﹣ x2+2x+6的圖象上,
∴n=﹣ (2﹣n)2+2(2﹣n)+6,解得n=﹣1+ 或n=﹣1﹣
∴滿足條件的點(diǎn)Q有兩個(gè),其坐標(biāo)分別為(2,﹣2+2 )或(2,﹣2﹣2 ).
【解析】(Ⅰ)由B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式,再求其頂點(diǎn)D即可;
(Ⅱ)過F作FG⊥x軸于點(diǎn)G,可設(shè)出F點(diǎn)坐標(biāo),利用△FBG∽△BDE,由相似三角形的性質(zhì)可得到關(guān)于F點(diǎn)坐標(biāo)的方程,可求得F點(diǎn)的坐標(biāo);
(Ⅲ)由于M、N兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,可知點(diǎn)P為對(duì)稱軸與x軸的交點(diǎn),點(diǎn)Q在對(duì)稱軸上,可設(shè)出Q點(diǎn)的坐標(biāo),則可表示出M的坐標(biāo),代入拋物線解析式可求得Q點(diǎn)的坐標(biāo).
【考點(diǎn)精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤(rùn)s(萬元)與銷售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:

(1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤(rùn)s(萬元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)到30萬元;
(3)求第8個(gè)月公司所獲利潤(rùn)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉.小麗在全校隨機(jī)抽取一部分同學(xué)就“一分鐘跳繩”進(jìn)行測(cè)試,并以測(cè)試數(shù)據(jù)為樣本繪制如圖所示的部分頻數(shù)分布直方圖(從左到右依次分為六個(gè)小組,每小組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖,若“一分鐘跳繩”次數(shù)不低于130次的成績(jī)?yōu)閮?yōu)秀,全校共有1200名學(xué)生,根據(jù)圖中提供的信息,下列說法不正確的是(

A.第四小組有10B.本次抽樣調(diào)查的樣本容量為50

C.該!耙环昼娞K”成績(jī)優(yōu)秀的人數(shù)約為480D.第五小組對(duì)應(yīng)圓心角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)設(shè)全新的校園文化氛圍,進(jìn)一步組織學(xué)生開展課外閱讀,讓學(xué)生在豐富多彩的書海中,擴(kuò)大知識(shí)源,親近母語,提高文學(xué)素養(yǎng).某校準(zhǔn)備開展“與經(jīng)典為友、與名著為伴”的閱讀活動(dòng),活動(dòng)前對(duì)本校學(xué)生進(jìn)行了“你最喜歡的圖書類型(只寫一項(xiàng))”的隨機(jī)抽樣調(diào)查,相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:

請(qǐng)根據(jù)以上信息解答下列問題:

1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

2)請(qǐng)將圖1和圖2補(bǔ)充完整:并求出扇形統(tǒng)計(jì)圖中小說所對(duì)應(yīng)的圓心角度數(shù).

3)已知該校共有學(xué)生1600人,利用樣本數(shù)據(jù)估計(jì)全校學(xué)生中最喜歡小說人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),試分別根據(jù)下列條件,求出點(diǎn)的坐標(biāo).

1)點(diǎn)軸上;

2)點(diǎn)的橫坐標(biāo)比縱坐標(biāo)大2;

3)點(diǎn)在過,且與軸平行的直線上.

4)點(diǎn)在到兩個(gè)坐標(biāo)軸的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成,已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;
(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CDEF相交于點(diǎn)O,∠COE60°,將一直角三角尺AOB的直角頂點(diǎn)與O重合,OA平分∠COE

(1)求∠BOD的度數(shù);

(2)將三角尺AOB以每秒3°的速度繞點(diǎn)O順時(shí)針旋轉(zhuǎn),同時(shí)直線EF也以每秒9°的速度繞點(diǎn)O順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間為t(0t40)

當(dāng)t為何值時(shí),直線EF平分∠AOB

②若直線EF平分∠BOD,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實(shí)數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求n2﹣4n的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案