一船在A處觀測到西北方向有一座燈塔B,這只船沿正西方向以每小時25海里的速度航行1小時12分鐘后到達C處,這時測得燈塔B在北偏東26°方向.求燈塔B到C處的距離(結(jié)果用含銳角三角函數(shù)的式子表示).
過B點作BD⊥CA于D.
AC=25×1.2=30(海里),
設BD=x,則CD=xcot(90°-26°)=xcot64°,
AC=CD+DA=xcot64°+x=30,
解得x=
30
1+cot64°

在Rt△BCD中,BC=
x
sin64°
,
則BC=
30
sin64°(1+cot64°)
=
30
sin64°+cos64°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,從地面上的點P測得大樓的某扇窗戶A的仰角為37°,再從點P測得該大樓窗戶A正上方的另一扇窗戶B,這時PA平分∠BPC.若點P到大樓的水平距離PC為10米.
(1)求∠BPC的度數(shù);
(2)試求窗戶B到地面的豎直高度BC(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在△ABC中,AB=8,∠ABC=30°,AC=5,則BC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

株洲電視塔又叫東方神龍塔,是一座鋼結(jié)構(gòu)帶旅游的多功能綜合電視塔,它是株洲市標志性景觀之一.某校數(shù)學興趣小組要測量株洲電視塔的高度,如圖,他們在點C處測得電視塔的最高點A的仰角為45°,再往電視塔的方向前進125m至點D處,測得最高點A的仰角為60°.求該興趣小組測得的株洲電視塔的高度AB.
(注:
3
≈1.7,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,⊙O的直徑AB=4,點P是AB延長線上的一點,過P點作⊙O的切線,切點為C,連接AC.
(1)若∠CPA=30°,求PC的長;
(2)若點P在AB的延長線上運動,∠CPA的平分線交AC于點M,你認為∠CMP的大小是否發(fā)生變化?若變化,請說明理由;若不變化,求出∠CMP的大小.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,AD=3,DC=5,AB=4
2
,∠B=45°.動點M從B點出發(fā)沿線段BC以每秒2個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD以每秒1個單位長度的速度向終點D運動.設運動的時間為t秒.
(1)求BC的長;
(2)當MNAB時,求t的值;
(3)試探究:t為何值時,△MNC為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某樓梯的側(cè)面視圖如圖所示,其中AB=4米,∠BAC=30°,∠C=90°,因某種活動要求鋪設紅色地毯,則在AB段樓梯所鋪地毯的長度應為______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,F(xiàn)是CD上一點,AE⊥AF,點E在CB的延長線上,EF交AB于點G,當tan∠DAF=
1
3
時,△AEF的面積為10,則當tan∠DAF=
2
3
時,△AEF的面積是多少.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明用一塊有一個銳角為30°的直角三角板測量樹高,已知小明離樹的距離為4米,DE為1.68米.
(1)這棵樹大約有多高?(精確到0.01米)
(2)小明沿BE方向走1米,求此時小明看樹頂C的仰角.(精確到1度)(參考數(shù)據(jù)tan37.6°≈0.77.)

查看答案和解析>>

同步練習冊答案