(2010•賀州)如圖,在平行四邊形ABCD中,E、F分別是邊AD、BC的中點,AC分別交BE、DF于點M、N.下面結(jié)論錯誤的是( 。
分析:由在平行四邊形ABCD中,E、F分別是邊AD、BC的中點,可證得四邊形BFDE是平行四邊形,繼而可利用AAS判定△ABM≌△CDN;易證得△AME∽△CMB,△AND∽△CNF,然后由相似三角形的對應(yīng)邊成比例,證得AM=
1
3
AC,DN=2NF.
解答:解:∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC,AB=CD,AD=BC,
∵E、F分別是邊AD、BC的中點,
∴DE=BF,
∴四邊形BFDE是平行四邊形,
∴∠AMB=∠ANF=∠CND,∠EBF=∠EDF,
∴∠ABM=∠CDN,
在△ABM和△CDN中,
∠ABM=∠CDN
∠AMB=∠CND
AB=CD
,
∴△ABM≌△CDN(AAS);
故A正確;
∵AD∥BC,
∴△AME∽△CMB,
∴AE:BC=AM:CM=1:2,
∴AM=
1
3
AC;
故B正確;
∵AD∥BC,
∴△AND∽△CNF,
∴AD:CF=DN:NF=2,
∴DN=2NF;
故C正確;
∵AB∥CD,AD∥BC,
∴△AME∽△CMB∽△CNF∽△AND,△ABM∽△CND,
但△AME與△DNC不一定相似.
故D錯誤.
故選D.
點評:此題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及平行四邊形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•賀州)如圖是由一些大小相同的小正方體搭成的一個幾何體的三視圖,則這個幾何體的小正方體個數(shù)共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•賀州)如圖所示,OM是一堵高為2.5米的圍墻截面的高,小明在圍墻內(nèi)投籃,籃球從點A處投出,卻投到了籃球框外,正好打在了斜靠在圍墻上的一根竹竿CD的點B處,籃球經(jīng)過的路線是二次函數(shù)y=ax2+bx+4圖象的一部分.現(xiàn)以O(shè)為原點,垂直于OM的水平線為x軸,OM所在的直線為y軸,建立如圖所示的平面直角坐標系,如果籃球不被竹竿擋住,籃球?qū)⑼ㄟ^圍墻外的點E,點E的坐標為(-3,
72
),點B和點E關(guān)于此二次函數(shù)圖象的對稱軸對稱,若tan∠OCM=1.(圍墻的厚度忽略不計,圍墻內(nèi)外水平面高度一樣)
(1)求竹竿CD所在的直線的解析式;
(2)求點B的坐標;
(3)在圍墻外距圍墻底部O點5.5米處有一個大池塘,如果籃球投出后不被竹竿擋住,籃球會不會直接落入池塘?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•賀州)如圖,在梯形ABCD中,AD∥BC,AC、BD是梯形的對角線,且AC⊥BD,AD=3cm,BC=7cm,BD=6cm,則梯形ABCD的面積是
24
24
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•賀州)如圖,△NKM與△ABC是兩塊完全相同的45°的三角尺,將△NKM的直角頂點M放在△ABC的斜邊AB的中點處,且MK經(jīng)過點C,設(shè)AC=a.則兩個三角尺的重疊部分△ACM的周長是
(1+
2
)a
(1+
2
)a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•賀州)如圖,在△ABC中,DE∥BC,EF∥AB.
(1)求證:△ADE∽△EFC;
(2)如果AB=6,AD=4,求
SADES△EFC
的值.

查看答案和解析>>

同步練習(xí)冊答案