【題目】如圖,線段AB=a,點(diǎn)P是AB中垂線MN上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線CD∥AB.若在直線CD上存在點(diǎn)Q使得△ABQ為等腰三角形,且滿足條件的點(diǎn)Q有且只有3個(gè),則PM的長(zhǎng)為_____.
【答案】a或a
【解析】
分兩種情況進(jìn)行討論,畫出圖形,依據(jù)點(diǎn)G在直線CD 上,AB=a,△GAB是等腰三角形的點(diǎn)G有且只有3個(gè),即可得到PM的長(zhǎng).
如圖所示,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧,
①當(dāng)直線CD經(jīng)過(guò)兩弧的交點(diǎn)時(shí),直線CD與兩弧共有3個(gè)交點(diǎn)G1,G2,G3,
此時(shí)滿足△GAB是等腰三角形的點(diǎn)G有且只有3個(gè),△PAB是等邊三角形,
∴PM=a;
②當(dāng)直線CD與兩弧均相切時(shí),直線CD與兩弧、直線MN共有3個(gè)交點(diǎn)G1,G2,G3,
此時(shí)滿足△GAB是等腰三角形的點(diǎn)G有且只有3個(gè),
∴PM=AG1=AB=a,
故答案為:a或a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若,是一元二次方程的兩個(gè)根,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)觀察圖象,當(dāng)時(shí),直接寫出的解集;
(3)若點(diǎn)P是軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線的頂點(diǎn)為A(2,1),且經(jīng)過(guò)原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)若點(diǎn)C在拋物線的對(duì)稱軸上,點(diǎn)D在拋物線上,且以O(shè)、C、D、B四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求D點(diǎn)的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點(diǎn)P,使得△OBP與△OAB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2﹣6x﹣16,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的線段CD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.點(diǎn)P是劣弧上任一點(diǎn)(不與點(diǎn)A,D重合),CP交AB于點(diǎn)M,AP與CD的延長(zhǎng)相交于點(diǎn)F.
(1)設(shè)∠CPF=α,∠BDC=β,求證:α=β+90°;
(2)若OE=BE,設(shè)tan∠AFC=x,.①求∠APC的度數(shù);
②求y關(guān)于x的函數(shù)表達(dá)式及自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的直角邊OB在x軸上,OB=2,AB=1,將Rt△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到Rt△CDO,拋物線y=﹣+bx+c經(jīng)過(guò)A,C兩點(diǎn).
(1)求點(diǎn)A,C的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)連接AC,點(diǎn)P是拋物線上一點(diǎn),直線OP把△AOC的周長(zhǎng)分成相等的兩部分,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,為邊的高,點(diǎn)在軸上,點(diǎn)在軸上,點(diǎn)在第一象限,若從原點(diǎn)出發(fā),沿軸向右以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),則點(diǎn)隨之沿軸下滑,并帶動(dòng)在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng)
(1)連接,線段的長(zhǎng)隨的變化而變化,當(dāng)最大時(shí),______.
(2)當(dāng)的邊與坐標(biāo)軸平行時(shí),______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,規(guī)定試銷期間銷售單價(jià)不低于成本價(jià).據(jù)試銷發(fā)現(xiàn),月銷量(千克)與銷售單價(jià)(元)符合一次函數(shù).若該商店獲得的月銷售利潤(rùn)為元,請(qǐng)回答下列問(wèn)題:
(1)請(qǐng)寫出月銷售利潤(rùn)與銷售單價(jià)之間的關(guān)系式(關(guān)系式化為一般式);
(2)在使顧客獲得實(shí)惠的條件下,要使月銷售利潤(rùn)達(dá)到8000元,銷售單價(jià)應(yīng)定為多少元?
(3)若獲利不高于,那么銷售單價(jià)定為多少元時(shí),月銷售利潤(rùn)達(dá)到最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com