【題目】如圖,在四邊形ABCD中,ADBC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F

(1)求ABE的大小及的長度;

(2)在BE的延長線上取一點G,使得上的一個動點P到點G的最短距離為,求BG的長.

【答案】(1)45°,;(2)4

【解析】

試題分析:(1)連接AE,如圖1,根據(jù)圓的切線的性質(zhì)可得AEBC,解RtAEB可求出ABE,進(jìn)而得到DAB,然后運用圓弧長公式就可求出的長度;

(2)如圖2,根據(jù)兩點之間線段最短可得:當(dāng)A、P、G三點共線時PG最短,此時AG=AP+PG==AB,根據(jù)等腰三角形的性質(zhì)可得BE=EG,只需運用勾股定理求出BE,就可求出BG的長.

試題解析:(1)連接AE,如圖1,AD為半徑的圓與BC相切于點E,AEBC,AE=AD=2.

在RtAEB中,sinABE===∴∠ABE=45°.ADBC,∴∠DAB+ABE=180°,∴∠DAB=135°,的長度為=;

(2)如圖2,根據(jù)兩點之間線段最短可得:當(dāng)A、P、G三點共線時PG最短,此時AG=AP+PG==,AG=AB.AEBG,BE=EG.BE===2,EG=2,BG=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商城某專賣店銷售每件成本為40元的商品,從銷售情況中隨機抽取一些情況制成統(tǒng)計表如下:(假設(shè)當(dāng)天定的售價是不變的,且每天銷售情況均服從這種規(guī)律)

每件銷售價(元)

50

60

70

75

80

85

……

每天售出件數(shù)

300

240

180

150

120

90

……

1)觀察這些數(shù)據(jù),找出每天售出件數(shù)y與每件售價x(元)之間的函數(shù)關(guān)系,并寫出該函數(shù)關(guān)系式;

2)該店原有兩名營業(yè)員,但當(dāng)每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè),設(shè)營業(yè)員每人每天工資為40元,求每件產(chǎn)品定價多少元,才能使純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其他開支不計).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC6cm,BC8m,點P從點A出發(fā)沿邊AC向點C1cm/s的速度移動,點Q從點C出發(fā)沿CB邊向點B2cm/s的速度移動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.

1)如果點P,Q同時出發(fā),經(jīng)過幾秒鐘時△PCQ的面積為8cm2?

2)如果點P,Q同時出發(fā),經(jīng)過幾秒鐘時以P、C、Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A1,m),B4,n)平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當(dāng)點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.

1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?

2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D為BC邊上的一點,且AD=AB=5, AD⊥AB于點A,過點D作DE⊥AD,DE交AC于點E,若DE=2,則ADC的面積為(

A.B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,分別為、上的點,沿直線折疊,使點B恰好落在上的處,當(dāng)恰好為直角三角形時,的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為(4,0),點By軸上的一動點,將線段AB繞點B順時針旋轉(zhuǎn)90°得線段BC,若點C恰好落在反比例函數(shù)y的圖象上,則點B的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊答案