【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中①ac0;②方程ax2+bx+c0的根是x1=﹣1,x23;③a+b+c0;④當(dāng)x1時,yx的增大而增大,正確的是( )

A. ①③B. ②④C. ①②④D. ②③④

【答案】D

【解析】

①依據(jù)拋物線開口方向可確定a的符號、與y軸交點確定c的符號進而確定ac的符號;②由拋物線與x軸交點的坐標(biāo)可得出一元二次方程ax2+bx+c=0的根;③由當(dāng)x=1y0,可得出a+b+c0;④觀察函數(shù)圖象并計算出對稱軸的位置,即可得出當(dāng)x1時,yx的增大而增大.

由圖可知:,

,故錯誤;

由拋物線與軸的交點的橫坐標(biāo)為

方程的根是,,故正確;

由圖可知:時,

,故正確;

由圖象可知:對稱軸為:,

時,隨著的增大而增大,故正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的,兩點,與軸交于點,過點軸,垂足為點,,點的縱坐標(biāo)為

1)求點的坐標(biāo);

2)求該反比例函數(shù)和一次函數(shù)的解析式;

3)連接,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點,經(jīng)過點,交軸于點

1)求拋物線的解析式及點的坐標(biāo);

2)求的面積;

3)若點在直線上,點在平面上,是否存在這樣的點,使得以點為頂點的四邊形為菱形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過點,射線與反比例函數(shù)的圖象的另一個交點為,射線軸交于點,軸交于點軸, 垂足為

求反比例函數(shù)的解析式;

的長

軸上是否存在點,使得相似,若存在,請求出滿足條件點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為中,弦,所對的圓心角分別是,,若,則弦的長等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩臺包裝機包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實際質(zhì)量如下(單位:g

甲:301,300,305,302,303,302,300300,298299

乙:305,302300,300300,300,298,299301,305

1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;

2)比較這兩臺包裝機包裝質(zhì)量的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮用三枚質(zhì)地均勻的硬幣做游戲,游戲規(guī)則是:同時拋擲這三枚硬幣,出現(xiàn)兩枚正面向上,一枚正面向下,則小明贏;出現(xiàn)兩枚正面向下,一枚正面向上,則小亮贏.這個游戲規(guī)則對雙方公平嗎?請你用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點邊上的一點,且,,過點于點,若,則的面積為(

A.B.4C.D.3

查看答案和解析>>

同步練習(xí)冊答案