如圖,⊙的直徑過弦的中點(diǎn),∠°,則∠等于
A.°B.°C.°D.°
C
欲求∠DCF,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解.
解:∵⊙O的直徑CD過弦EF的中點(diǎn)G,
∴ED=GF
(垂徑定理),
∴∠DCF=∠EOD(等弧所對的圓周角是圓心角的一半),
∴∠DCF=20°.
故選 C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)如圖,在△ABC中,∠C= 90°,以AB上一點(diǎn)O為圓心,
OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F
(1)若AC=6,AB= 10,求⊙O的半徑;
(2)連接OE、ED、DFEF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•湛江)如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過點(diǎn)A,D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,從⊙O外一點(diǎn)A引圓的切線AB,切點(diǎn)為B,連接AO并延長交圓于點(diǎn)C
連接BC.若∠A=26°,則∠ACB的度數(shù)為   
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分5分)已知:如圖,在中,,點(diǎn)上,以為圓心,長為半徑的圓與分別交于點(diǎn),且
(1)判斷直線的位置關(guān)系,并證明你的結(jié)論;
(2)若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:如圖,,為⊙O的弦,點(diǎn)上,若,,,則的長為                  .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:AB是⊙O的弦,OD⊥AB于M交⊙O于點(diǎn)D,CB⊥AB交AD的延長線于C.

(1)求證:AD=DC;
(2)過D作⊙O的切線交BC于E,若DE=2,CE=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)B是⊙O的半徑OA的中點(diǎn),且CD⊥OA于B,則tan∠CPD的值為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D,求線段AD的長度.

查看答案和解析>>

同步練習(xí)冊答案