【題目】已知函數(shù)f(x)=aln2x+bx在x=1處取得最大值ln2﹣1,則a= , b=

【答案】1;﹣1
【解析】解:求導(dǎo)f′(x)= +b, 函數(shù)f(x)=aln2x+bx在x=1處取得最大值ln2﹣1,
則f′(1)=0且f(1)=ln2﹣1,
,解得: ,
則a=1,b=﹣1,
所以答案是:1,﹣1.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的極值與導(dǎo)數(shù)和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點(diǎn),且四邊形PEFD為矩形.

(Ⅰ)若△PCD是等腰三角形時,求AP的長;
(Ⅱ)若AP= ,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y= 的圖象上,當(dāng)﹣3≤x≤﹣1時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)PBC邊上的一個動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C’處;作∠BPC’的角平分線交AB于點(diǎn)E . 設(shè)BP=x , BE=y , 則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜邊AB上取一點(diǎn)D,過點(diǎn)D作DE//BC,交AC于點(diǎn)E.現(xiàn)將△ADE繞點(diǎn)A旋轉(zhuǎn)一定角度到如圖2所示的位置(點(diǎn)D在△ABC的內(nèi)部),使得∠ABD+∠ACD=90°.

(1)①求證:△ABD∽△ACE;
②若CD=1,BD= ,求AD的長;
(2)如圖3,將原題中的條件“AC=BC”去掉,其它條件
不變,設(shè) ,若CD=1,BD=2,AD=3,求k的值;

(3)如圖4,將原題中的條件“∠ACB=90°”去掉,其它條件不變,若 ,設(shè)CD=m , BD=n , AD=p , 試探究m , n , p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>0,b>0)的離心率為 ,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為 (O為坐標(biāo)原點(diǎn)).

(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上的一點(diǎn),過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點(diǎn)M,證明:|PF|+|PM|為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個袋中裝有1紅,2白和2黑共5個小球,這5個小球除顏色外其它都相同,現(xiàn)從袋中任取2個球,則至少取到1個白球的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|.
(1)若a=1,解不等式f(x)≤5;
(2)當(dāng)a≠0時, ,求滿足g(a)≤4的a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù). (Ⅰ)當(dāng)f(x)>0時,求實(shí)數(shù)x的取值范圍;
(Ⅱ)當(dāng)a=2時,求使得f(x)+k>0成立的最小正整數(shù)k.

查看答案和解析>>

同步練習(xí)冊答案