【題目】觀察與思考:閱讀下列材料,并解決后面的問(wèn)題.

在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過(guò)AADBCD(如圖1),則sinB,sinC,即ADcsinB,ADbsinC,于是csinBbsinC,即.同理有:,,所以=,即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等.在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.根據(jù)上述材料,完成下列各題.

(1)如圖2,△ABC中,∠B45°,∠C75°,BC60,則∠A_____AC_____;

(2)如圖3,一貨輪在C處測(cè)得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得燈塔A在貨輪的北偏西75°的方向上(如圖3),求此時(shí)貨輪距燈塔A的距離AB

【答案】(1)60°,;(2)貨輪距燈塔的距離AB15海里.

【解析】

1)利用題目總結(jié)的正弦定理,將有關(guān)數(shù)據(jù)代入求解即可;
2)在ABC中,分別求得BC的長(zhǎng)和三個(gè)內(nèi)角的度數(shù),利用題目中總結(jié)的正弦定理求AC的長(zhǎng)即可.

(1)A60°AC;

(2)如圖,依題意:BC60×0.530(海里)

CDBE,

∴∠DCB+CBE180°

∵∠DCB30°,

∴∠CBE150°

∵∠ABE75°

∴∠ABC75°,

∴∠A45°,

在△ABC中,,即

解之得:AB15

答:貨輪距燈塔的距離AB15海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過(guò)程中,甲、乙兩車(chē)離開(kāi)A城的距離y(千米)與甲車(chē)行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:①AB兩城相距300千米;②乙車(chē)比甲車(chē)晚出發(fā)1小時(shí),卻早到1.5小時(shí);③乙車(chē)出發(fā)后2.5小時(shí)追上甲車(chē);④當(dāng)甲、乙兩車(chē)相距40千米時(shí),tt,其中正確的結(jié)論有(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB,AGCH3,BGDH2,則HG兩點(diǎn)之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D在反比例函數(shù)的圖象上,過(guò)點(diǎn)Dx軸的平行線交y軸于點(diǎn)B0,2),過(guò)點(diǎn)A(,0)的直線ykx+by軸于點(diǎn)C,且BD2OCtanOAC

1)求反比例函數(shù)的解析式;

2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;

3)點(diǎn)Ex軸上點(diǎn)A左側(cè)的一點(diǎn),且AEBD,連接BE交直線CA于點(diǎn)M,求tanBMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知公路lAB兩點(diǎn)之間的距離為50m,小明要測(cè)量點(diǎn)C與河對(duì)岸邊公路l的距離,測(cè)得∠ACB=∠CAB30°.點(diǎn)C到公路l的距離為( 。

A. 25m B. m C. 25m D. 25+25m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,AB=BD,點(diǎn)B、C、DG四個(gè)點(diǎn)在同一個(gè)圓⊙O上,連接BG 并延長(zhǎng)交AD于點(diǎn)F,連接DG并延長(zhǎng)交AB于點(diǎn)E,BDCG交于點(diǎn)H,連接FH,下列結(jié) 論:①AE=DF;②FH∥AB;③△DGH∽△BGE;當(dāng)CG⊙O的直徑時(shí),DF=AF.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6,EAD邊上的一個(gè)動(dòng)點(diǎn),將四邊形BCDE沿直線BE折疊,得到四邊形BCDE,連接AC,AD′.

1)若直線DABC于點(diǎn)F,求證:EF=BF;

2)當(dāng)AE=時(shí),求證:△ACD是等腰三角形;

3)在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,求△ACD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)的圖象過(guò)點(diǎn)(1,0),其對(duì)稱軸為,下列結(jié)論:①;②;③;④此二次函數(shù)的最大值是,其中結(jié)論正確的是(

A. ①②B. ②③C. ②④D. ①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案