【題目】如圖,已知線段AB=6cm,過點B做射線BF且滿足∠ABF=40°,點C為線段AB中點,點P為射線BF上的動點,連接PA,過點B作PA的平行線交射線PC于點D,設(shè)PB的長度為xcm,PD的長度為y1cm,BD的長度為y2cm.(當(dāng)點P與點B重合時,y1與y2的值均為6cm)
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小騰的探究過程,請補充完整:
(1)按照下表中自變量x (0≤x≤6)的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 6.0 | 4.7 | 3.9 | 4.1 | 5.1 | 6.6 | 8.4 |
y2/cm | 6.0 | 5.3 | 4.7 | 4.2 | 3.9 | 4.1 |
(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))
(2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出y1,y2的圖象;
(3)結(jié)合函數(shù)圖象解決問題:當(dāng)△PDB為等腰三角形時,則BP的長度約為 cm;
(4)當(dāng)x>6時,是否存在x的值使得△PDB為等腰三角形 (填“是”或者“否”).
【答案】(1)y2≈3.9;(2)見解析;(3)3.1或3.9;(4)否,理由見解析
【解析】
(1)畫圖,測量即可得;
(2)根據(jù)題(1)表的數(shù)據(jù),在同一平面直角坐標(biāo)系中,先描點,再順次連接各點即可;
(3)結(jié)合題(2)的圖象,分,,三種情況討論即可得;
(4)結(jié)合題(2)的圖象,分析當(dāng)時,的圖象,的圖象,直線三者是否有交點即可得出答案.
(1)由畫圖、測量可得,時,;
(2)根據(jù)題(1)表的數(shù)據(jù),在同一平面直角坐標(biāo)系中,先描點,再順次連接各點,得到的圖象如下圖所示:
(3)由與的交點的橫坐標(biāo)可知,時,,即,此時為等腰三角形
由直線與的交點的橫坐標(biāo)可知,時,,即,此時為等腰三角形
觀察圖象可知,PB不可能等于PD
故答案為3.1或3.9;
(4)觀察圖象可知,當(dāng)時,的圖象,的圖象,直線三者沒有交點
則不可能為等腰三角形
故答案為“否”.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】襄陽市精準(zhǔn)扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍莓第幾天時,當(dāng)天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當(dāng)天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年共享單車上市以來,給人們的出行提供了了便利,受到了廣大市民的青睞,某公司為了了解員工上下班回家的路線(設(shè)路程為x公里)情況,隨機抽取了若干名員工進行了問卷調(diào)查,現(xiàn)將這些員工的謂查結(jié)果分為四個等級,A:0≤x≤3、B:3<x≤6、C:6<x≤9、D:x>9,并將調(diào)查結(jié)果繪制成如下兩個不完整的統(tǒng)計圖。
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖中的B D ;
(2)所抽取員工下班路程的中位數(shù)落在等級 (填字母)
(3)若該公司有900名員工,為了方便員工上下班,在高峰期時規(guī)定路程在6公里以上可優(yōu)先選擇共享單車下斑,請你估算該公司有多少人可以優(yōu)先選擇共享單車。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程a(x﹣h+1)2+k+2=0(a>0)的解是x1=﹣5,x2=1,則不等式a(x+h﹣2)2+k<﹣2的解集為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生每月的零用錢情況,從甲、乙、丙三個學(xué)校各隨機抽取200名學(xué)生,調(diào)查了他們的零用錢情況(單位:元)具體情況如下:
學(xué)校頻數(shù)零用錢 | 100≤x<200 | 200≤x<300 | 300≤x<400 | 400≤x<500 | 500以上 | 合計 |
甲 | 5 | 35 | 150 | 8 | 2 | 200 |
乙 | 16 | 54 | 68 | 52 | 10 | 200 |
丙 | 0 | 10 | 40 | 70 | 80 | 200 |
在調(diào)查過程中,從__(填“甲”,“乙”或“丙”)校隨機抽取學(xué)生,抽到的學(xué)生“零用錢不低于300元”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計步行時間提前了3 分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形 ABCD 內(nèi)接于⊙O,連接 AC、BD,∠BAD+2∠ACB=180°.
(1)如圖 1,求證:點 A 為弧 BD 的中點;
(2)如圖 2,點 E 為弦 BD 上一點,延長 BA 至點 F,使得 AF=AB,連接 FE 交 AD 于點 P,過點 P 作 PH⊥AF 于點 H,AF=2AH+AP,求證:AH:AB=PE:BE;
(3)在(2)的條件下,如圖 3,連接 AE,并延長 AE 交⊙O 于點 M,連接 CM,并延長 CM 交 AD 的延長線于點 N,連接 FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求 AH 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,點D在邊BC上,BD=6,CD=2,點P是邊AB上一點,則PC+PD的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=-x2+4x-6.
(1)直接寫出拋物線與坐標(biāo)軸的交點坐標(biāo);
(2)設(shè)二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出△PAD的周長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com