矩形OABC在平 面直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0),C(0,-3),直線y=-x與BC邊相交于D點(diǎn).

(1)若拋物線y=ax-x經(jīng)過點(diǎn)A,試確定此拋物線的解析式;
(2)在(1)中的拋物線的對稱軸上取一點(diǎn)E,求出EA+ED的最小值;
(3)設(shè)(1)中的拋物線的對稱軸與直線OD交于點(diǎn)M,點(diǎn)P為對稱軸上一動點(diǎn),以P、O、M為頂點(diǎn)的三角形與△OCD相似,求符合條件的點(diǎn)P的坐標(biāo).
(1)拋物線的解析式為y=x-x (2)EA+ED的最小值為5 (3)P1(3,0),P2(3,4)

試題分析:(1)拋物線y=ax-x經(jīng)過點(diǎn)A(6,0),
∴0=36a-×36, ∴a=,故拋物線的解析式為y=x-x.  
(2)直線y=-x與BC邊相交于D點(diǎn),
當(dāng)y=-3時(shí),x=4,∴點(diǎn)D的坐標(biāo)為(4,-3).
∵點(diǎn)O與點(diǎn)A關(guān)于對稱軸對稱,且點(diǎn)E在對稱軸上,
∴EA="EO," ∴EA+ED=EO+ED,
則最小值為OD==5,∴EA+ED的最小值為5.          
(3)拋物線的對稱軸與x軸的交點(diǎn)P1符合條件.

∵OA∥CB ,∴∠P1OM=∠CDO.
∵∠OP1M=∠DCO=90°,∴Rt△P1OM∽Rt△CDO.
∵拋物線的對稱軸為x=3,∴點(diǎn)P1的坐標(biāo)為(3,0).
過點(diǎn)O作OD的垂線交拋物線的對稱軸于點(diǎn)P2.
∵對稱軸平行于y軸,∴∠P2MO=∠DOC.
∵∠P2OM=∠DCO=90°, ∴Rt△P2MO∽Rt△DOC.
∴點(diǎn)P2也符合條件,∠OP2M=∠ODC.
∵P1O=CO=3,∠P2P1O=∠DCO=90°,
∴Rt△P2P1O ≌Rt△DCO. ∴P1P2=CD=4.
∵點(diǎn)P2在第一象限,∴點(diǎn)P2的坐標(biāo)為(3,4).
∴符合條件的點(diǎn)P有兩個(gè),分別是P1(3,0),P2(3,4).       
點(diǎn)評:本題考查拋物線,全等三角形,掌握拋物線的性質(zhì),要求考生能求函數(shù)解析式,熟悉全等三角形的判定方法,并會證明兩個(gè)三角形全等
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線軸的交點(diǎn)為A、B,與 軸的交點(diǎn)為C,頂點(diǎn)為,將拋物線繞點(diǎn)B旋轉(zhuǎn),得到新的拋物線,它的頂點(diǎn)為D.

(1)求拋物線的解析式;
(2)設(shè)拋物線軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段ED上一個(gè)動點(diǎn)(P不與E、D重合),過點(diǎn)P作y軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為,△PEF的面積為S,求S與的函數(shù)關(guān)系式,寫出自變量的取值范圍;
(3)設(shè)拋物線的對稱軸與軸的交點(diǎn)為G,以G為圓心,A、B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,AB=10,以AB為直徑的⊙與y軸正半軸交于點(diǎn)C,連接BC、AC,CD是⊙的切線,AD⊥CD于點(diǎn)D,tan∠CAD=,拋物線過A、B、C三點(diǎn).

(1)求證:∠CAD=∠CAB;
(2)求拋物線的解析式;
(3)判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在△ABC中,∠A = 90°,,經(jīng)過這個(gè)三角形重心的直線DE // BC,分別交邊AB、AC于點(diǎn)D和點(diǎn)E,P是線段DE上的一個(gè)動點(diǎn),過點(diǎn)P分別作PMBC,PFABPGAC,垂足分別為點(diǎn)MF、G.設(shè)BM = x,四邊形AFPG的面積為y

(1)求PM的長;
(2)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)聯(lián)結(jié)MF、MG,當(dāng)△PMF與△PMG相似時(shí),求BM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸、y軸分別交于A(-1,0)、B(0,3)兩點(diǎn),頂點(diǎn)為D.

(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為E. 求四邊形ABDE的面積(3分)
(3)△AOB與△BDE是否相似?如果相似,請予以證明;如果不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果拋物線經(jīng)過點(diǎn)(-1,0)和(3,0),那么它的對稱軸是直線
A.x = 0B.x = 1C.x = 2D.x = 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.

(1)求b的值;
(2)若點(diǎn)P是線段AB中垂線上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形.若存在,試直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說明理由;
(3)點(diǎn)Q為線段AB上一個(gè)動點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與軸交于A、B兩點(diǎn),與軸交于點(diǎn)P,頂點(diǎn)為C(1,-2).

(1)求此函數(shù)的關(guān)系式;
(2)作點(diǎn)C關(guān)于軸的對稱點(diǎn)D,順次連接A、C、B、D.若在拋物線上存在點(diǎn)E,使直線PE將四邊形ABCD分成面積相等的兩個(gè)四邊形,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)F,使得△PEF是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)F的坐標(biāo)及△PEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,將拋物線先向右平移兩個(gè)單位,再向上平移兩個(gè)單位,得到的拋物線的函數(shù)關(guān)系式是          

查看答案和解析>>

同步練習(xí)冊答案