【題目】已知A,B兩地相距1 km.要在A,B兩地之間修建一條筆直的水渠(即圖中的線段AB),經(jīng)測量在A地的北偏東60°方向,B地的北偏西45°方向的C處有一個以C為圓心,350 m為半徑的圓形公園,則修建的這條水渠會不會穿過公園?為什么?
【答案】修建的這條水渠不會穿過公園,理由詳見解析.
【解析】
先過點C作CD⊥AB于D,設(shè)CD為xkm,則BD為xkm,AD為xkm,則有xx=1,求出x的值,再與350 m比較大小,即可得出答案.
修建的這條水渠不會穿過公園.理由如下:
過點C作CD⊥AB,垂足為D.
∵∠CBA=45°,∴∠BCD=45°,CD=BD.
設(shè)CD=x km,則BD=x km.
易知∠CAB=30°,∴AC=2x km,AD==km.
∴xx=1,解得:x=,即CD=km≈0.366 km=366 m>350 m,也就是說,以點C為圓心,350 m為半徑的圓與AB相離.
即修建的這條水渠不會穿過公園.
科目:初中數(shù)學 來源: 題型:
【題目】在△OAB中,OA=OB,OA⊥OB.在△OCD中,OC=OD,OC⊥OD.
(1)如圖1,若A,O,D三點在同一條直線上,求證:S△AOC=S△BOD;
(2)如圖2,若A,O,D三點不在同一條直線上,△OAB和△OCD不重疊.則S△AOC=S△BOD是否仍成立?若成立,請予以證明;若不成立,也請說明理由.
(3)若A,O,D三點不在同一條直線上,△OAB和△OCD有部分重疊,經(jīng)過畫圖猜想,請直接寫出 S△AOC和S△BOD的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工匠制作某種金屬工具要進行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進行鍛造操作,經(jīng)過8min時,材料溫度降為600℃.煅燒時溫度y(℃)與時間x(min)成一次函數(shù)關(guān)系;鍛造時,溫度y(℃)與時間x(min)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時y與x的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;
(2)根據(jù)工藝要求,當材料溫度低于480℃時,須停止操作.那么鍛造的操作時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為R,弦AB,CD互相垂直,連接AD,BC.
(1)求證:AD2+BC2=4R2;
(2)若弦AD,BC的長是方程x2-6x+5=0的兩個根(AD>BC),求⊙O的半徑及點O到AD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,AC是弦,OC=4,∠OAC=60°.
(1)求∠AOC的度數(shù);
(2)如圖,一動點M從A點出發(fā),在⊙O上按逆時針方向運動,當S△MAO=S△CAO時,求動點M所經(jīng)過的弧長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-4,0),B(2,0),與y軸交于點C(0,2).
(1)求拋物線對應(yīng)的函數(shù)表達式;
(2)以AB為直徑作⊙M,一直線經(jīng)過點E(-1,-5),并且與⊙M相切,求該直線對應(yīng)的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若x1,x2是關(guān)于x的方程x2+bx+c=0的兩個實數(shù)根,且|x1|+|x2|=2|k|(k是整數(shù)),則稱方程x2+bx+c=0為“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.判斷方程x2+x-12=0是否是“偶系二次方程”,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對一批西裝質(zhì)量抽檢情況如下表:
(1)從這批西裝中任選一套,是次品的概率是多少?
(2)若要銷售這批西裝2000件,為了方便購買了次品西裝的顧客前來調(diào)換,至少應(yīng)進多少件西裝?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com