【題目】按要求解答下列各題:
(1)如圖①,求作一點,使點到的兩邊的距離相等,且在的邊上.(用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法和證明);
(2)如圖②,表示兩個港口,港口在港口的正東方向上.海上有一小島在港口的北偏東方向上,且在港口的北偏西方向上.測得海里,求小島與港口之間的距離.(結果可保留根號)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,于點,于點,與交于點,于點,點是的中點,連接并延長交于點.
(1)如圖①所示,若,求證:;
(2)如圖②所示,若,如圖③所示,若(點與點重合),猜想線段、與之間又有怎樣的數(shù)量關系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:a*b=,則下列等式中對于任意實數(shù) a、b、c 都成立的是( )
①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c
③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△AOB的三個頂點A、O、B分別落在拋物線F1:的圖象上,點A的橫坐標為﹣4,點B的縱坐標為﹣2.(點A在點B的左側(cè))
(1)求點A、B的坐標;
(2)將△AOB繞點O逆時針旋轉(zhuǎn)90°得到△A'OB',拋物線F2:經(jīng)過A'、B'兩點,已知點M為拋物線F2的對稱軸上一定點,且點A'恰好在以OM為直徑的圓上,連接OM、A'M,求△OA'M的面積;
(3)如圖2,延長OB'交拋物線F2于點C,連接A'C,在坐標軸上是否存在點D,使得以A、O、D為頂點的三角形與△OA'C相似.若存在,請求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有拋物線y=a(x﹣2)2﹣2和y=a(x﹣h)2,拋物線y=a(x﹣2)2﹣2經(jīng)過原點,與x軸正半軸交于點A,與其對稱軸交于點B;點P是拋物線y=a(x﹣2)2﹣2上一動點,且點P在x軸下方,過點P作x軸的垂線交拋物線y=a(x﹣h)2于點D,過點D作PD的垂線交拋物線y=a(x﹣h)2于點D′(不與點D重合),連接PD′,設點P的橫坐標為m:
(1)①直接寫出a的值;
②直接寫出拋物線y=a(x﹣2)2﹣2的函數(shù)表達式的一般式;
(2)當拋物線y=a(x﹣h)2經(jīng)過原點時,設△PDD′與△OAB重疊部分圖形周長為L:
①求的值;
②直接寫出L與m之間的函數(shù)關系式;
(3)當h為何值時,存在點P,使以點O、A、D、D′為頂點的四邊形是菱形?直接寫出h的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知⊙O外一點P向⊙O作切線PA,點A為切點,連接PO并延長交⊙O于點B,連接AO并延長交⊙O于點C,過點C作,分別交PB于點E,交⊙O于點D,連接AD.
(1)求證:△APO~△DCA;
(2)如圖2,當時
①求的度數(shù);
②連接AB,在⊙O上是否存在點Q使得四邊形APQB是菱形.若存在,請直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組請結合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得___________;
(Ⅱ)解不等式②,得___________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)數(shù)學理解:如圖①,△ABC是等腰直角三角形,過斜邊AB的中點D作正方形DECF,分別交BC,AC于點E,F,求AB,BE,AF之間的數(shù)量關系;
(2)問題解決:如圖②,在任意直角△ABC內(nèi),找一點D,過點D作正方形DECF,分別交BC,AC于點E,F,若AB=BE+AF,求∠ADB的度數(shù);
(3)聯(lián)系拓廣:如圖③,在(2)的條件下,分別延長ED,FD,交AB于點M,N,求MN,AM,BN的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
我們知道一次函數(shù)(,是常數(shù))的圖象是一條直線,到高中學習時,直線通常寫成 (,是常數(shù))的形式,點到直線的距離可用公式計算.
例如:求點到直線的距離.
解:∵
∴其中
∴點到直線的距離為:
根據(jù)以上材料解答下列問題:
(1)求點到直線的距離;
(2)如圖,直線沿軸向上平移2個單位得到另一條直線,求這兩條平行直線之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com