【題目】二次函數(shù)yx2的圖象如圖所示,點A0位于坐標(biāo)原點,點A1、AA、、Ay軸的正半軸上,點B、BB、、B在二次函數(shù)yx2位于第一象限的圖象上,若△A0B1A1、△A1B2A2、△A2B3A3、、△A2017B2018A2018都為等邊三角形,則△ABA的邊長=____________

【答案】2018

【解析】

分別過B1,B2B3y軸的垂線,垂足分別為AB、C,設(shè)A0A1=aA1A2=b,A2A3=c,則AB1=a,BB2=bCB3=c,再根據(jù)所求正三角形的邊長,分別表示B1,B2,B3的縱坐標(biāo),逐步代入拋物線y=x2中,求a、b、c的值,得出規(guī)律.

解:分別過B1,B2,B3y軸的垂線,垂足分別為AB、C
設(shè)A0A1=a,A1A2=b,A2A3=c,則AB1=a,BB2=bCB3=c,

在正△A0B1A1中,B1a),
代入y=x2中,得=×a2,解得a=1,即A0A1=1,
在正△A1B2A2中,B2b,1+),
代入y=x2中,得1+=×b2,解得b=2,即A1A2=2
在正△A2B3A3中,B3c3+),
代入y=x2中,得3+=×c2,解得c=3,即A2A3=3,

依此類推由此可得△A2017B2018A2018的邊長=2018,
故答案為: 2018

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:內(nèi)接于,直徑邊于點

1)如圖所示,求證:;

2)如圖所示,過點H,交,交于點,連接,求證:;

3)如圖所示,在(2)的條件下,延長至點,連接、,過點,射線于點,交于點,連接,若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房90間,當(dāng)每間客房的定價為每天140元時,客房會全部住滿.當(dāng)每間客房每天的定價每漲10元時,就會有5間客房空閑.如果旅客居住客房,賓館需對每間客房每天支出60元的各種費用.

1)請寫出該賓館每天入住的客房數(shù)y(間)與每間客房漲價x(元)(x10的倍數(shù))滿足的函數(shù)關(guān)系式;

2)請求出該賓館一天的最大利潤,并指出此時客房定價應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動點PA點出發(fā),按A→B→C的方向在ABBC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的一部分如圖所示,給出以下結(jié)論:;當(dāng)時,函數(shù)有最大值;方程的解是,,其中結(jié)論錯誤的個數(shù)是  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點.

1)求該拋物線的解析式;

2)拋物線的對稱軸上是否存在一點,使的周長最。咳舸嬖,請求出點的坐標(biāo),若不存在,請說明理由.

3)設(shè)拋物線上有一個動點,當(dāng)點在該拋物線上滑動到什么位置時,滿足,并求出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把圖1稱為一個基本圖形,顯然這個基本圖形中有6個矩形,將此基本圖形不斷復(fù)制并向上平移、疊加,這樣得到圖2,圖3…(如圖所示)

1)觀察圖形,完成如表:

圖形名稱

矩形個數(shù)

1

6

2

18

3

36

4

60

5

   

2)根據(jù)以上規(guī)律猜想,圖形n中共有多少個矩形(用含n的代數(shù)式表示)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y軸,x軸分別相交于點A、B.點Dx軸上動點,點D從點B出發(fā)向原點O運動,點E在點D右側(cè),DE=2BD.過點DDHAB于點H,將△DBH沿直線DH翻折,得到△DCH,連接CE.設(shè)BD=t,△DCE與△AOB重合部分面積為S.求:

1)求線段BC的長(用含t的代數(shù)式表示);

2)求S關(guān)于t的函數(shù)解析式,并直接寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的兩條直角邊AB=4cm,AC=3cm,點D沿ABAB運動,速度是1cm/秒,同時,點E沿BCBC運動,速度為2cm/. 動點E到達(dá)點C時運動終止.連結(jié)DECD、AE.1)填空:當(dāng)動點運動_______ 秒時,△BDE△ABC相似?

2)設(shè)動點運動t秒時△ADE的面積為s,求st的函數(shù)解析式;

3)在運動過程中是否存在某一時刻t,使CD⊥DE?若存在,求出時刻t;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案