【題目】拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是直線(xiàn)x=﹣2.拋物線(xiàn)與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣4,0)和點(diǎn)(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個(gè)數(shù)有( 。4a﹣b=0;②c≤3a;③關(guān)于x的方程ax2+bx+c=2有兩個(gè)不相等實(shí)數(shù)根;④b2+2b>4ac.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
①由對(duì)稱(chēng)軸即可判斷;
②將c≤3a轉(zhuǎn)化為時(shí)所對(duì)應(yīng)的函數(shù)值,由對(duì)稱(chēng)性轉(zhuǎn)化為時(shí)所對(duì)應(yīng)的函數(shù)值,即可判斷;
③根據(jù)圖象所體現(xiàn)的最大值即可判斷;
④根據(jù)圖象的最值結(jié)合對(duì)稱(chēng)軸即可判斷.
①因?yàn)閷?duì)稱(chēng)軸為,所以,即,故①正確;
②由①知,所以時(shí),;
因?yàn)閽佄锞(xiàn)與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣4,0)和點(diǎn)(﹣3,0)之間,所以時(shí),
又因?yàn)?/span>與關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),所以,即,故②錯(cuò)誤;
③由圖可知y=ax2+bx+c的最大值為3,所以當(dāng)ax2+bx+c=2時(shí)有兩個(gè)不相等的實(shí)數(shù)根;故③正確;
④由圖可知:,即,
又且,所以=,
所以,即,故④正確;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線(xiàn)上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)經(jīng)過(guò),,三點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上有一點(diǎn),使的值最小,求點(diǎn)的坐標(biāo);
(3)點(diǎn)為軸上一動(dòng)點(diǎn),在拋物線(xiàn)上是否存在一點(diǎn),使以,,,四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,直線(xiàn)(k為常數(shù))與拋物線(xiàn)交于A,B兩點(diǎn),且A點(diǎn)在軸右側(cè),P點(diǎn)的坐標(biāo)為(0,4)連接PA,PB.(1)△PAB的面積的最小值為____;(2)當(dāng)時(shí),=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中 ,連接,點(diǎn),分別是的點(diǎn)(點(diǎn)不與點(diǎn)重合),,相交于點(diǎn).
(1)求,的長(zhǎng);
(2)求證:~;
(3)當(dāng)時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】遵義市各校都在深入開(kāi)展勞動(dòng)教育,某校為了解七年級(jí)學(xué)生一學(xué)期參加課外勞動(dòng)時(shí)間(單位:h)的情況,從該校七年級(jí)隨機(jī)抽查了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
課外勞動(dòng)時(shí)間頻數(shù)分布表
勞動(dòng)時(shí)間分組 | 頻數(shù) | 頻率 |
0≤t<20 | 2 | 0.1 |
20≤t<40 | 4 | m |
40≤t<60 | 6 | 0.3 |
60≤t<80 | a | 0.25 |
80≤t<100 | 3 | 0.15 |
解答下列問(wèn)題:
(1)頻數(shù)分布表中a= ,m= ;將頻數(shù)分布直方圖補(bǔ)充完整;
(2)若七年級(jí)共有學(xué)生400人,試估計(jì)該校七年級(jí)學(xué)生一學(xué)期課外勞動(dòng)時(shí)間不少于60h的人數(shù);
(3)已知課外勞動(dòng)時(shí)間在60h≤t<80h的男生人數(shù)為2人,其余為女生,現(xiàn)從該組中任選2人代表學(xué)校參加“全市中學(xué)生勞動(dòng)體驗(yàn)”演講比賽,請(qǐng)用樹(shù)狀圖或列表法求所選學(xué)生為1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y1=,y2=﹣(k>0).
(1)當(dāng)2≤x≤3時(shí),函數(shù)y1的最大值是a,函數(shù)y2的最小值是a﹣4,求a和k的值.
(2)設(shè)m≠0,且m≠﹣1,當(dāng)x=m時(shí),y1=p;當(dāng)x=m+1時(shí),y1=q.圓圓說(shuō):“p一定大于q”.你認(rèn)為圓圓的說(shuō)法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,將△ABC沿直線(xiàn)AB折疊得到△ABD,交⊙O于點(diǎn)D.連接CD交AB于點(diǎn)E,延長(zhǎng)BD和CA相交于點(diǎn)P,過(guò)點(diǎn)A作AG∥CD交BP于點(diǎn)G.
(1)求證:直線(xiàn)GA是⊙O的切線(xiàn);
(2)求證:AC2=GDBD;
(3)若tan∠AGB=,PG=6,求cos∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全球關(guān)注的抗擊“新冠肺炎”中某跨國(guó)科研中心的一個(gè)團(tuán)隊(duì)研制了一種助治“新冠附炎”的新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn),如果成人按規(guī)定的制量服用,那么服藥后2小時(shí)血液中含藥量最高,達(dá)每毫升8微克(1微克=毫克),接著逐步安減,10小時(shí)時(shí)血液中含藥最為每毫升3微克,每毫升血液中含藥量(微克)隨時(shí)間(小時(shí))的變化如圖所示.
(1)分別求線(xiàn)段所表示的函數(shù)關(guān)系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時(shí)對(duì)治病是有效的,那么這個(gè)有效時(shí)間是多長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com