【題目】如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過點(diǎn)DAC的垂線,垂足為F,與AB相交于點(diǎn)E,連接CE

1)證明:AE=CE=BE;

2)若DAAB,BC=6,P是直線DE上的一點(diǎn).則當(dāng)P在何處時(shí),PB+PC最小,并求出此時(shí)PB+PC的值.

【答案】(1)詳見解析;(2)當(dāng)點(diǎn)P與點(diǎn)E共點(diǎn)時(shí),PB+PC的值最小,最小值為12

【解析】

1)根據(jù)等邊三角形“三線合一”的性質(zhì)證得DE垂直平分AC;然后由等腰三角形的判定知AE=CE,根據(jù)等邊對(duì)等角、直角三角形的兩個(gè)銳角互余的性質(zhì)以及等量代換求得∠BCE=B;最后根據(jù)等角對(duì)等邊證得CE=BE,所以AE=CE=BE;

2)由(1)知,DE垂直平分AC,故PC=PA;由等量代換知PB+PC=PB+PA;根據(jù)兩點(diǎn)之間線段最短可知,當(dāng)點(diǎn)P、BA在同一直線上最小,所以點(diǎn)PE處時(shí)最小.

解:(1∵△ADC是等邊三角形,DFAC,

DF垂直平分線段AC,

AEEC, ∴∠ACECAE, ∵∠ACB90°,

∴∠ACE+∠BCE90°CAE+∠B90°

∴∠BCEB,CEEBAECEBE

2)連接PA,PB,PC

DAAB, ∴∠DAB90° ,∵∠DAC60°,

∴∠CAB30°, ∴∠B60°,

BCAEEBCE6AB12,

DE垂直平分AC,PCAP ∴PB+PCPB+PA,

當(dāng)PB+PC最小時(shí),也就是PB+PA最小,即PB,A共線時(shí)最小,

當(dāng)點(diǎn)P與點(diǎn)E共點(diǎn)時(shí),PB+PC的值最小,最小值為12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)和點(diǎn)

求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

該拋物線與直線相交于兩點(diǎn),點(diǎn)P是拋物線上的動(dòng)點(diǎn)且位于x軸下方,直線軸,分別與x軸和直線CD交于點(diǎn)M、N

①連結(jié)PCPD,如圖1,在點(diǎn)P運(yùn)動(dòng)過程中,的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說明理由;

②連結(jié)PB,過點(diǎn)C,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校某次外出社會(huì)實(shí)踐活動(dòng)分為三類,因資源有限,七年級(jí)7班分配到20個(gè)名額,其中甲類2個(gè)、乙類8個(gè)、丙類10個(gè),已知該班有50名學(xué)生,班主任準(zhǔn)備了50個(gè)簽,其中甲類、乙類、丙類按名額設(shè)置、30個(gè)空簽.采取抽簽的方式來確定名額分配,請(qǐng)解決下列問題:

1)該班小明同學(xué)恰好抽到丙類名額的概率是多少?

2)該班小麗同學(xué)能有幸去參加實(shí)踐活動(dòng)的概率是多少?

3)后來,該班同學(xué)強(qiáng)烈呼吁名額太少,要求抽到甲類的概率要達(dá)到20%,則還要爭(zhēng)取甲類名額多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC的面積為1cm2AP垂直∠B的平分線BPP.則與三角形PBC的面積相等的長(zhǎng)方形是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6/盆,繡球花10/盆.若一次購(gòu)買的繡球花超過20盆時(shí),超過20盆部分的繡球花價(jià)格打8折.

(1)分別寫出兩種花卉的付款金額y()關(guān)于購(gòu)買量x()的函數(shù)解析式;

(2)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購(gòu)買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少總費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖∠ABC=ADC=90°,MN分別是AC、BD的中點(diǎn).

1)試判斷△BMD的形狀,并說明理由.

2)求證: MNBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外角的平分線交邊的垂直平分線于點(diǎn),,.

1)求證:

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8分2014年12月28日青煙威榮城際鐵路正式開通,從煙臺(tái)到北京的高鐵里程比普快里程縮短了81千米運(yùn)行時(shí)間減少了9小時(shí),已知煙臺(tái)到北京的普快列車?yán)锍淘?026千米,高鐵平均時(shí)速是普快平均時(shí)速的25倍

1求高鐵列車的平均時(shí)速;

2某日王老師要去距離煙臺(tái)大約630千米的某市參加14:00召開的會(huì)議如果他買到

當(dāng)日8:40從煙臺(tái)到該是的高鐵票,而且從該市火車站到會(huì)議地點(diǎn)最多需要15小時(shí)試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下他能在開會(huì)之前趕到嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案