【題目】如圖,在四邊形ABCD中,ABCD,ADBCANCM

(1)求證:BNDM;

(2)BC3CD2,∠B50°,求∠BCD、∠D的度數(shù)及四邊形ABCD的周長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)BCD130°,∠D50°,四邊形ABCD的周長(zhǎng)=10

【解析】

1)首先判斷四邊形ABCD和四邊形ANMD為平行四邊形,然后由平行四邊形的對(duì)邊相等推知ABCDANCM,由等式的性質(zhì)證得結(jié)論;

2)根據(jù)平行四邊形的對(duì)邊平行,平行線的性質(zhì)以及平行四邊形的對(duì)角相等進(jìn)行解答.

(1)ABCD,ADBC,

∴四邊形ABCD是平行四邊形,

ABCD,

又∵ANCM,

∴四邊形ANMD為平行四邊形,

ANCM,

ABANCDCM,即BNDM;

(2)ABCD,

∴∠B+BCD180°

∵∠B50°,

∴∠BCD180°50°130°,

(1)知,四邊形ABCD是平行四邊形,

∴∠D=∠B50°,ABCD,ADBC,

BC3,CD2,

∴四邊形ABCD的周長(zhǎng)=2(BC+CD)2×(3+2)10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線BC//ED.

(1)如圖1,若點(diǎn)A在直線DE上,且B=44°,∠EAC=57°,求BAC的度數(shù);

(2)如圖2,若點(diǎn)A是直線DE的上方一點(diǎn),點(diǎn)GBC的延長(zhǎng)線上求證:∠ACG=∠BAC+∠ABC;

(3)如圖3,FH平分AFE,CH平分ACG,且FHCA2倍少60°,直接寫(xiě)出A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人騎自行車(chē)前往A,他們距A地的路程s(km)與行駛時(shí)間t(h)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)甲、乙兩人的速度各是多少?

(2)求出甲距地的路程與行駛時(shí)間之間的函數(shù)關(guān)系式.

(3)在什么時(shí)間段內(nèi)乙比甲離地更近?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形 ABCD 中,E BC 的中點(diǎn),F CD 上一點(diǎn),且 CF CD ,

求證:(1)∠AEF90°;

2 BAE=∠EAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD,AB2BC,在CD上取點(diǎn)E,使AEEB,那么∠EBC等于(  )

A. 15°B. 30°C. 45°D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.
(1)求證:k取任何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的書(shū)包,如果以單價(jià)50元出售,那么每月可售出30個(gè),根據(jù)銷(xiāo)售經(jīng)驗(yàn),售價(jià)每提高5元,銷(xiāo)售量相應(yīng)減少1個(gè).
(1)請(qǐng)寫(xiě)出銷(xiāo)售單價(jià)提高 元與總的銷(xiāo)售利潤(rùn)y元之間的函數(shù)關(guān)系式;
(2)如果你是經(jīng)理,為使每月的銷(xiāo)售利潤(rùn)最大,那么你確定這種書(shū)包的單價(jià)為多少元?此時(shí),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點(diǎn),O是形內(nèi)一點(diǎn),若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別是45、6,則四邊形DHOG的面積是( )

A. 5B. 4C. 8D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,AC=6,將△ABC沿AE折疊 使點(diǎn)C恰好落在AB邊上的點(diǎn)F.BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案