【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且cosα= ,則線段CE的最大值為

【答案】6.4
【解析】解:作AG⊥BC于G,如圖,

∵AB=AC,

∴BG=CG,

∵∠ADE=∠B=α,

∴cosB=cosα= = ,

∴BG= ×10=8,

∴BC=2BG=16,

設(shè)BD=x,則CD=16﹣x,

∵∠ADC=∠B+∠BAD,即α+∠CDE=∠B+∠BAD,

∴∠CDE=∠BAD,

而∠B=∠C,

∴△ABD∽△DCE,

= ,即 = ,

∴CE=﹣ x2+ x

=﹣ (x﹣8)2+6.4,

當(dāng)x=8時(shí),CE最大,最大值為6.4.

作AG⊥BC于G,如圖,根據(jù)等腰三角形的性質(zhì)得BG=CG,再利用余弦的定義計(jì)算出BG=8,則BC=2BG=16,設(shè)BD=x,則CD=16﹣x,證明△ABD∽△DCE,利用相似比可表示出CE=﹣ x2+ x,然后利用二次函數(shù)的性質(zhì)求CE的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點(diǎn),連接BD,使∠A=2∠1,點(diǎn)E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.

(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把正方體的6個(gè)面分別涂上不同的顏色,并畫上朵數(shù)不等的花,各面上的顏色與花朵數(shù)的情況如下表:

顏色

藍(lán)

花朵數(shù)

1

2

3

4

5

6

現(xiàn)將上述大小相同,顏色、花朵分布完全一樣的四個(gè)正方體拼成一個(gè)在同一平面上放置的長(zhǎng)方體,如圖所示,那么長(zhǎng)方體的下底面共有_____朵花.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,已知點(diǎn)A(﹣6,0),點(diǎn)B在原點(diǎn),CA=CB=5,把等腰三角形ABC沿x軸正半軸作無(wú)滑動(dòng)順時(shí)針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點(diǎn)C的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到 達(dá)圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時(shí)間 (分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖像回答下列問題:

(1)小聰在圖書館查閱資料的時(shí)間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.

(2)請(qǐng)你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時(shí)間 (分鐘)之間的函數(shù)表達(dá)式;

(3)若設(shè)兩人在路上相距不超過 千米時(shí)稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時(shí)間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:

操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)AB重合,折痕為DE

1)如果AC=6cm,BC=8cm,可求得△ACD的周長(zhǎng)為 ;

2)如果∠CAD∠BAD=47,可求得∠B的度數(shù)為 ;

操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請(qǐng)求出CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連接AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=-x3的圖像分別與x軸、y軸交于A、B兩點(diǎn).動(dòng)點(diǎn)PA點(diǎn)開始沿折線AOOBBA運(yùn)動(dòng),點(diǎn)PAO,OBBA上運(yùn)動(dòng)的速度分別為1,2 (長(zhǎng)度單位/秒);動(dòng)點(diǎn)EO點(diǎn)開始以(長(zhǎng)度單位/秒)的速度沿線段OB運(yùn)動(dòng).設(shè)P、E兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t (秒),當(dāng)點(diǎn)P沿折線AOOBBA運(yùn)動(dòng)一周時(shí),動(dòng)點(diǎn)EP同時(shí)停止運(yùn)動(dòng).過點(diǎn)EEFOA,交AB于點(diǎn)F

1)求線段AB的長(zhǎng);

2)求證:∠ABO=30°;

3)當(dāng)t為何值時(shí),點(diǎn)P與點(diǎn)E重合?

4)當(dāng)t = 時(shí),PE=PF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14

1)寫出數(shù)軸上點(diǎn)B表示的數(shù);

2)若點(diǎn)M、N分別是線段AO、BO的中點(diǎn),求線段MN的長(zhǎng);

3)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā).以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

查看答案和解析>>

同步練習(xí)冊(cè)答案