【題目】已知:函數(shù)y=﹣x2+mx+2m(m為常數(shù))的圖象不經(jīng)過第二象限,當(dāng)﹣5≤x≤1時(shí),函數(shù)的最大值與最小值之差為12.25,則m的值為_____.
【答案】-3或-5
【解析】
由題意可知m≤0,當(dāng)≤0時(shí),△≤0,則﹣8≤m≤0,函數(shù)的最大值為+2m,函數(shù)的最小值為3m﹣1,據(jù)此結(jié)合已知進(jìn)行求解即可得.
∵函數(shù)y=﹣x2+mx+2m(m為常數(shù))的圖象不經(jīng)過第二象限,-1<0,
∴函數(shù)圖象開口向下,與y軸交于原點(diǎn)或負(fù)半軸,
∴2m≤0,此時(shí)△≤0,
∴m≤0,
∵拋物線的對(duì)稱軸x=,
∴≤0,
即對(duì)稱軸在y軸或y軸左側(cè),
∴拋物線與x軸的交點(diǎn)又一個(gè)或沒有交點(diǎn),
∴△=m2+8m≤0,
∴﹣8≤m≤0,
∴-4≤≤0,
∴當(dāng)﹣5≤x≤1時(shí),
函數(shù)在x=時(shí)取最大值為+2m,
x=-5時(shí),y=-25-3m,
x=1時(shí),y=3m-1,
∵-25-3m-(3m-1)=-24-6m,
∴當(dāng)﹣8≤m<-4時(shí),-25-3m-(3m-1)=-24-6m>0,
當(dāng)﹣4≤m≤0時(shí),-25-3m-(3m-1)=-24-6m≤0,
∴①當(dāng)﹣8≤m<-4時(shí), 3m-1為最小值,
則有+2m﹣3m+1=12.25,
∴m=﹣5或m=9(舍去);
②當(dāng)﹣4≤m≤0時(shí),-25-3m為最小值,
則有+2m-(-25-3m)=12.25,
∴m=-3或m=-17(舍去),
綜上,m=-3或m=-5,
故答案為:-3或-5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,分別沿長方形紙片ABCD和正方形紙片EFGH的對(duì)角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=3,點(diǎn)E是邊CD的中點(diǎn),點(diǎn)P,Q分別是射線DC與射線EB上的動(dòng)點(diǎn),連結(jié)PQ,AP,BP,設(shè)DP=t,EQ=t.
(1)當(dāng)點(diǎn)P在線段DE上(不包括端點(diǎn))時(shí).
①求證:AP=PQ;②當(dāng)AP平分∠DPB時(shí),求△PBQ的面積.
(2)在點(diǎn)P,Q的運(yùn)動(dòng)過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請(qǐng)求出t的值;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O的“隨心點(diǎn)”.
(1)當(dāng)⊙O的半徑r=2時(shí),A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點(diǎn)”是 ;
(2)若點(diǎn)E(4,3)是⊙O的“隨心點(diǎn)”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時(shí),直線y=- x+b(b≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O的“隨心點(diǎn)”,直接寫出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,∠ABC=45 ,點(diǎn)O是AB的中點(diǎn),過A、C兩點(diǎn)向經(jīng)過點(diǎn)O的直線作垂線,垂足分別為E、F.
(1)如圖①,求證:EF=AE+CF.
(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)自家辦公大樓一塊米的正方形墻面進(jìn)行了如圖所示的設(shè)計(jì)裝修(四周陰影部分是八個(gè)全等的矩形,用材料甲裝修;中心區(qū)是正方形,用材料乙裝修). 兩種材料的成本如下表:
材料 | 甲 | 乙 |
價(jià)格(元/米2) | 550 | 500 |
設(shè)矩形的較短邊的長為米,裝修材料的總費(fèi)用為元.
(1)計(jì)算中心區(qū)的邊的長(用含的代數(shù)式表示);
(2)求關(guān)于的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長不小于2米時(shí),預(yù)備材料的購買資金32000元夠用嗎?請(qǐng)利用函數(shù)的增減性來說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上的一點(diǎn),BE=4,EC=8,將正方形邊AB沿AE折疊到AF,延長EF交DC于G,連接AG,現(xiàn)在有如下四個(gè)結(jié)論:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中結(jié)論正確的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)P為BC邊上一點(diǎn)(不與B、C重合),連接PA,以P為旋轉(zhuǎn)中心,將線段PA順時(shí)針旋轉(zhuǎn)90°,得到線段PD,連接DB.
(1)請(qǐng)?jiān)趫D中補(bǔ)全圖形;
(2)∠DBA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3cm,則∠BAC的度數(shù)為( 。
A. 15° B. 75°或15° C. 105°或15° D. 75°或105°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com