【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn)。
(1)求這個(gè)二次函數(shù)y=x2+bx+c的解析式。
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點(diǎn)P的坐標(biāo)。
【答案】(1)二次函數(shù)的解析式為;(2)P()時(shí),四邊形POP′C為菱形.
【解析】
(1)將點(diǎn)B、C的坐標(biāo)代入解方程組即可得到函數(shù)解析式;
(2)根據(jù)四邊形POP′C為菱形,得到,且與OC互相垂直平分,可知點(diǎn)P的縱坐標(biāo)為,將點(diǎn)P的縱坐標(biāo)代入解析式即可得到橫坐標(biāo),由此得到答案.
(1)將點(diǎn)B(3,0)、C(0,﹣3)的坐標(biāo)代入y=x2+bx+c,得
,∴
∴二次函數(shù)的解析式為;
(2)如圖,
令中x=0,得y=-3,
∴C(0,-3)
∵四邊形POP′C為菱形,
∴,且與OC互相垂直平分,
∴點(diǎn)P的縱坐標(biāo)為,
當(dāng)y=時(shí), ,
得: ,
∵點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn),
∴P()時(shí),四邊形POP′C為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與函數(shù)的圖象交于,兩點(diǎn),且點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)已知點(diǎn),過(guò)點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn).
①當(dāng)時(shí),求線段的長(zhǎng);
②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)E是AB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說(shuō)明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件元,售價(jià)為每件元.每天可以銷售件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若該商品每降價(jià)元,每天可多銷售件,那么每天要想獲得最大利潤(rùn),每件售價(jià)應(yīng)多少元?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC內(nèi)接于,點(diǎn)D是的中點(diǎn),且與點(diǎn)C位于AB的異側(cè),CD交AB于點(diǎn)E.
(1)求證:△ADE∽△CDA
(2)如圖2,若的直徑AB,CE=2,求AD和CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y1=(x>0)的圖象與y2=(x>0)的圖象關(guān)于x軸對(duì)稱,Rt△AOB的頂點(diǎn)A,B分別在y1=(x>0)和y2=(x>0)的圖象上.若OB=AB,點(diǎn)B的縱坐標(biāo)為﹣2,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交x、y軸于點(diǎn)A、B,拋物線經(jīng)過(guò)點(diǎn)A、B,點(diǎn)P為第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)如圖1所示,過(guò)點(diǎn)P作PM∥y軸,分別交直線AB、x軸于點(diǎn)C、D,若以點(diǎn)P、B、C為頂點(diǎn)的三角形與以點(diǎn)A、C、D為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo);
(3)如圖2所示,過(guò)點(diǎn)P作PQ⊥AB于點(diǎn)Q,連接PB,當(dāng)△PBQ中有某個(gè)角的度數(shù)等于∠OAB度數(shù)的2倍時(shí),請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形DOE的半徑為3,邊長(zhǎng)為的菱形OABC的頂點(diǎn)A,C,B分別在OD,OE,上,若把扇形DOE圍成一個(gè)圓錐,則此圓錐的高為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com