【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:FE⊥AB;
(2)當(dāng)EF=6,=時,求DE的長.
【答案】(1)見解析(2).
【解析】試題分析:(1)連接OD .根據(jù)EF與⊙O相切.可得OD⊥EF,所以要證明FE⊥AB,只要證明OD∥AB即可;
(2)首先利用sin∠CFD=,在Rt△AEF中,求出AF的長,然后利用△ODF∽△AEF.求出圓的半徑,再根據(jù)EB=AB-AE計算即可.
試題解析:(1)證明:連接OD . (如圖)
∵ OC=OD,
∴ ∠OCD="∠ODC."
∵ AB=AC,
∴∠ACB=∠B.
∴ ∠ODC=∠B.
∴ OD∥AB. 1分
∴ ∠ODF =∠AEF.
∵ EF與⊙O相切.
∴ OD⊥EF,∴ ∠ODF =90°.
∴∠AEF ="∠ODF" =90°.
∴ EF⊥AB. 2分
(2)解:由(1)知:OD∥AB,OD⊥EF .
在Rt△AEF中,sin∠CFD ==,AE=6.
∴ AF=10. 3分
∵ OD∥AB,
∴ △ODF∽△AEF.
∴.
∴.
解得r=. 4分
∴ AB=" AC=2r" =.
∴ EB=AB-AE=-6=. 5分
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時,甲發(fā)現(xiàn)當(dāng)x=1時,函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)x=2時,y=4,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯誤的,則該同學(xué)是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點P是AB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)請直接寫出PM與PN的數(shù)量關(guān)系及位置關(guān)系 ;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請直接寫出PM與PN的數(shù)量關(guān)系及位置關(guān)系 ;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當(dāng)點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE是圓O的直徑,點B在AE的延長線上,點D在圓O上,且AC⊥DC, AD平分∠EAC
(1)求證:BC是圓O的切線。
(2)若BE=8,BD=12,求圓O的半徑,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合).
(1)若點A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+∠ODA= °.
(2)若四邊形OBCD為平行四邊形.
①當(dāng)圓心O在∠BAD的內(nèi)部時,求∠OBA+∠ODA的度數(shù);
②當(dāng)圓心O在∠BAD的外部時,請畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P,Q為平面直角坐標系xOy中不重合的兩點,以點P為圓心且經(jīng)過點Q作⊙P,則稱點Q為⊙P的“關(guān)聯(lián)點”,⊙P為點Q的“關(guān)聯(lián)圓”.
(1)已知⊙O的半徑為1,在點E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點”為______;
(2)若點P(2,0),點Q(3,n),⊙Q為點P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;
(3)已知點D(0,2),點H(m,2),⊙D是點H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點”,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為K90的化學(xué)賽道,其中助滑坡AB長90米,坡角a=40°,一個曲面平臺BCD連接了助滑坡AB與著陸坡,某運動員在C點飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運動員成績?yōu)?/span>DE=85.5米,BD之間的垂直距離h為1米,則該運動員在此比賽中,一共垂直下降了( )米.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結(jié)果保留一位小數(shù))
A. 101.4 B. 101.3 C. 100.4 D. 100.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com