【題目】如圖,在△ABC中,∠C=90°,以A為圓心,任意長為半徑畫弧,分別交AC,AB于點M,N,再分別以M,N為圓心,大于MN長為半徑畫弧,兩弧交于點O,作射線AO,交BC于點E.已知CE=3,BE=5,則AC的長為( 。
A.8B.7C.6D.5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l與坐標(biāo)軸相交于點M(3,0),N(0,﹣4),反比例函數(shù)y=(x>0)的圖象經(jīng)過Rt△MON的外心A.
(1)求直線l的解析式;
(2)直接寫出點A坐標(biāo)及k值;
(3)在函數(shù)y=(x>0)的圖象上取異于點A的一點B,作BC⊥x軸于點C,連接OB交直線l于點P,若△OMP的面積與△OBC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,
(1)求一次函數(shù)的解析式.
(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:
①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰與等腰,,,,連接和相交于點,交于點,交與點.下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一種動畫程序,在平面直角坐標(biāo)系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A(1,1),B(2,1),C(1,3),用信號槍沿直線y=3x+b發(fā)射信號,當(dāng)信號遇到黑色區(qū)域時,區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( )
A.﹣5≤b≤0B.﹣5<b≤﹣3C.﹣5≤b≤3D.﹣5≤b≤5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AG交CD于點H,若∠C=120°,則∠AHD=( )
A. 120° B. 30° C. 150° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角中,,,、的平分線交于點.
(1)求證:;
(2)若的外角平分線以及的平分線交于點,(1)結(jié)論是否成立?請在圖中補全圖形,寫出結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com