【題目】如圖,數(shù)軸上兩點(diǎn)分別表示有理數(shù)2和5,我們用來表示兩點(diǎn)之間的距離.
(1)直接寫出的值=______;
(2)若數(shù)軸上一點(diǎn)表示有理數(shù)m,則的值是______;
(3)當(dāng)代數(shù)式∣n +2∣+∣n 5∣的值取最小值時(shí),寫出表示n的點(diǎn)所在的位置;
(4)若點(diǎn)分別以每秒2個(gè)單位長度和每秒3個(gè)單位長度的速度同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),求經(jīng)過多少秒后,點(diǎn)到原點(diǎn)的距離是點(diǎn)到原點(diǎn)的距離的2倍.
【答案】(1)7;(2);(3);(4)1秒或3秒
【解析】
(1)根據(jù)兩點(diǎn)間距離公式求解即可;
(2)根據(jù)兩點(diǎn)間距離公式求解即可;
(3)根據(jù)n+2和n-5以及兩點(diǎn)間距離公式,即可得出n的取值范圍;
(4)設(shè)經(jīng)過x秒后點(diǎn)A到原點(diǎn)的距離是點(diǎn)B到原點(diǎn)的距離的2倍,利用兩點(diǎn)間距離公式分兩種情況列出方程,求解即可.
解:(1)
故答案為:7
(2)
(3)n點(diǎn)位于線段AB上(包括A、B兩點(diǎn)),即時(shí)有最小值7;
即:
(4)設(shè)經(jīng)過x秒后點(diǎn)A到原點(diǎn)的距離是點(diǎn)B到原點(diǎn)的距離的2倍,
第一種情況:2+2x=2(5-3x),解得:x=1
第二種情況:2+2x=2(3x-5),解得:x=3
答:經(jīng)過1秒或3秒后點(diǎn)A到原點(diǎn)的距離是點(diǎn)B到原點(diǎn)的距離的2倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,AE⊥BC于點(diǎn)E,F為AB邊上一點(diǎn),連接CF,交AE于點(diǎn)G,CF=CB=AE.
(1)若AB,BC,求CE的長;
(2)求證:BE=CG﹣AG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內(nèi),∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).
解:過O點(diǎn)作射線OM,使點(diǎn)M,O,A在同一直線上.
因?yàn)椤?/span>MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號(hào)的污水處理設(shè)備共10臺(tái).已知用90萬元購買A型號(hào)的污水處理設(shè)備的臺(tái)數(shù)與用75萬元購買B型號(hào)的污水處理設(shè)備的臺(tái)數(shù)相同,每臺(tái)設(shè)備價(jià)格及月處理污水量如下表所示:
污水處理設(shè)備 | A型 | B型 |
價(jià)格(萬元/臺(tái)) | m | m-3 |
月處理污水量(噸/臺(tái)) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對(duì)于平面上小于等于90°的∠MON,我們給出如下定義:若點(diǎn)P在∠MON的內(nèi)部或邊上,作PE⊥OM于點(diǎn)E,PF⊥ON于點(diǎn)F,則將PE+PF稱為點(diǎn)P與∠MON的“點(diǎn)角距”,記作d(∠MON,P).如圖2,在平面直角坐標(biāo)系xOy中,x、y正半軸所組成的角為∠xOy.
(1)已知點(diǎn)A(5,0)、點(diǎn)B(3,2),則d(∠xOy,A)= ,d(∠xOy,B)= .
(2)若點(diǎn)P為∠xOy內(nèi)部或邊上的動(dòng)點(diǎn),且滿足d(∠xOy,P)=5,畫出點(diǎn)P運(yùn)動(dòng)所形成的圖形.
(3)如圖3與圖4,在平面直角坐標(biāo)系xOy中,射線OT的函數(shù)關(guān)系式為y=x(x≥0).
①在圖3中,點(diǎn)C的坐標(biāo)為(4,1),試求d(∠xOT,C)的值;
②在圖4中,拋物線y=-x2+2x+經(jīng)過A(5,0)與點(diǎn)D(3,4)兩點(diǎn),點(diǎn)Q是A,D兩點(diǎn)之間的拋物線上的動(dòng)點(diǎn)(點(diǎn)Q可與A,D兩點(diǎn)重合),求當(dāng)d(∠xOT,Q)取最大值時(shí)點(diǎn)Q 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個(gè)正方形.
(1)圖2的陰影部分的正方形的邊長是 ______.
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法1)= _____________;
(方法2)=______________;
(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(如圖),點(diǎn)分別在邊上,且四邊形是菱形
(1)請使用直尺與圓規(guī),分別確定點(diǎn)的具體位置(不寫作法,保留畫圖痕跡);
(2)如果,點(diǎn)在邊上,且滿足,求四邊形的面積;
(3)當(dāng)時(shí),求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A和B兩個(gè)小機(jī)器人,自甲處同時(shí)出發(fā)相背而行,繞直徑為整數(shù)米的圓周上運(yùn)動(dòng),15分鐘內(nèi)相遇7次,如果A的速度每分鐘增加6米,則A和B在15分鐘內(nèi)相遇9次,問圓周直徑至多是多少米?至少是多少米?(取π=3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(,0),AD=2,∠DAB=60°點(diǎn)P從點(diǎn)A出發(fā)沿A→D→C運(yùn)動(dòng)到點(diǎn)C,連接PO.當(dāng)PO=OB時(shí),點(diǎn)P的坐標(biāo)為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com