【題目】探究:如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,直線l3有一點P,
(1)若點P在C、D之間運動時,問∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化,并說明理由.
(2)若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?并說明理由.
【答案】(1)∠APB=∠PAC+∠PBD,理由見解析;(2)當(dāng)點P在C、D兩點的外側(cè)運動,且在l1上方時,∠PBD=∠PAC+∠APB;當(dāng)點P在C、D兩點的外側(cè)運動,且在l2下方時,∠PAC=∠PBD+∠APB.理由見解析.
【解析】
試題分析:(1)過點P作PE∥l1根據(jù)l1∥l2得出PE∥l2∥l1,從而得出∠PAC=∠1,∠PBD=∠2,然后得出答案;(2)分點P在C、D兩點的外側(cè)運動,在l1上方和在l2下方時兩種情況,分別根據(jù)(1)的方法得出答案.
試題解析:(1)當(dāng)點P在C、D之間運動時,∠APB=∠PAC+∠PBD.理由如下:
過點P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)ⅰ)當(dāng)點P在C、D兩點的外側(cè)運動,且在l1上方時,∠PBD=∠PAC+∠APB.理由如下:
∵l1∥l2,
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
ⅱ)當(dāng)點P在C、D兩點的外側(cè)運動,且在l2下方時,∠PAC=∠PBD+∠APB.理由如下:
∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班同學(xué)為了解2011年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請解答以下問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)若該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的計算正確的是( )
A.6a-5a=1
B.a+2a2=2a3
C.-(a-b)= -a+b
D.2(a+b) =2a+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△DEF是△ABC經(jīng)過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應(yīng)點,觀察點與點的坐標(biāo)之間的關(guān)系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標(biāo),并說說對應(yīng)點的坐標(biāo)有哪些特征;
(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應(yīng)點,求a,b的值.
(3)求圖中△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C;②∠A﹕∠B﹕∠C=1﹕2﹕3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=∠B=∠C,能確定△ABC為直角三角形的條件有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任何整數(shù)m,多項式(4m+5)2-9一定能( )
A. 被8整除 B. 被m整除
C. 被m-91整除 D. 被2m-1整除
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com