當(dāng)x為任意實數(shù)時,下列各式有意義的是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:要使各根式有意義,即為被開方數(shù)為非負數(shù),根據(jù)題意,即當(dāng)x為實數(shù)時,均滿足條件,結(jié)合題意可知只有C選項成立.
解答:A、當(dāng)x為正數(shù)時不成立;
B、當(dāng)x為負數(shù)時不成立;
C、當(dāng)x為任意實數(shù)時,(3x-100)2≥0,二次根式有意義;
D、當(dāng)|x|>時不成立;
故答案選C.
點評:本題考查了二次根式成立的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時,a+b有最小值2
p
.   
根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時,m+
1
m
有最小值
 
;
若m>0,只有當(dāng)m=
 
時,2m+
8
m
有最小值
 

(2)如圖,已知直線L1y=
1
2
x+1
與x軸交于點A,過點A的另一直線L2與雙曲線y=
-8
x
(x>0)
相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1于點D,試求當(dāng)線段CD最短精英家教網(wǎng)時,點A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀學(xué)習(xí)下材料,并完成下面的兩個小題.
在我們的和諧互助學(xué)習(xí)課堂上,老師跟一個小組的同學(xué)在進行激烈的討論.下面是他們的對話:
小卉:對于任意實數(shù)a的平方是非負數(shù).
小銘:對呀,也就是說a平方最小是0.即:a2≥0,當(dāng)a=0時,a2=0
小紅:如果a2+b2=0,那么必有a=0且b=0,如果其中一個不為0,原等式就不成立.
老師:你們的觀點都是正確的.
(1)當(dāng)x=
-1
-1
,時,多項式x2+2x+1取得最小值為
0
0
.(直接填上結(jié)果)    
(2)如果x2+2x+y2-6y+10=0,求(x+y)-2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

實踐與探究:

對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴

只有當(dāng)a=b時,等號成立。

結(jié)論:在(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當(dāng)m=       時,有最小值         ;

若m>0,只有當(dāng)m=       時,2有最小值        .

(2)如圖,已知直線L1與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1

于點D,試求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省江陰華士片八年級下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

閱讀理解:對于任意正實數(shù)ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時,等號成立.
結(jié)論:在ab≥2ab均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時,ab有最小值2.  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m      時,m有最小值        ;
m>0,只有當(dāng)m      時,2m有最小值       .
(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=
x>0)相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CDy軸交直線L1于點D,試
求當(dāng)線段CD最短時,點A、BC、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰華士片八年級下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

閱讀理解:對于任意正實數(shù)a、b,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時,等號成立.

結(jié)論:在ab≥2a、b均為正實數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時,ab有最小值2.   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當(dāng)m       時,m有最小值         ;

m>0,只有當(dāng)m       時,2m有最小值        .

(2)如圖,已知直線L1:y=x+1與x軸交于點A,過點A的另一直線L2與雙曲線y=

x>0)相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CDy軸交直線L1于點D,試

求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

同步練習(xí)冊答案