【題目】如圖,直線軸交于點,與軸交于點,將線段繞點逆時針旋轉(zhuǎn)得到線段,雙曲線經(jīng)過點.

1)求直線和雙曲線的解析式.

2)平移直線,使它與雙曲線有唯一公共點時,求點的坐標.

【答案】1,;(2)(-3,6

【解析】

1)根據(jù)待定系數(shù)法即可求出直線AB的解析式,過點軸于,如圖,根據(jù)AAS即可證明,從而得,,進而可得點C坐標,進一步即可求出雙曲線的解析式;

2)設平移后的直線為,根據(jù)題意可知聯(lián)立該直線與雙曲線的解析式組成的方程組只有一個實數(shù)解,即△=0,由此可得關(guān)于n的方程,解方程求出n后再解方程即可求出點P坐標.

解:(1,∴設直線的解析式為,

將點代入,得,

直線的解析式為,

過點軸于,如圖,則,

,

,

,

,

,

雙曲線的解析式為

2)設平移后的直線為,

,得,

由題意,得,得n=12(舍去),

此時,

的坐標為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出):有同樣大小正方形256個,拼成如圖1所示的的一個大的正方形.請問如果用一條直線穿過這個大正方形的話,最多可以穿過多少個小正方形?

(問題探究):我們先考慮以下簡單的情況:一條直線穿越一個正方形的情況.(如圖2

從圖中我們可以看出,當一條直線穿過一個小正方形時,這條直線最多與正方形上、下、左、右四條邊中的兩個邊相交,所以當一條直線穿過一個小正方形時,這條直線會與其中某兩條邊產(chǎn)生兩個交點,并且以兩個交點為頂點的線段會全部落在小正方形內(nèi).

這就啟發(fā)我們:為了求出直線最多穿過多少個小正方形,我們可以轉(zhuǎn)而去考慮當直線穿越由小正方形拼成的大正方形時最多會產(chǎn)生多少個交點.然后由交點數(shù)去確定有多少根小線段,進而通過線段的根數(shù)確定下正方形的個數(shù).

再讓我們來考慮正方形的情況(如圖3):

為了讓直線穿越更多的小正方形,我們不妨假設直線右上方至左下方穿過一個的正方形,我們從兩個方向來分析直線穿過正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線最多可穿過的大正方形中的六條線段,從而直線上會產(chǎn)生6個交點,這6個交點之間的5條線段,每條會落在一個不同的正方形內(nèi),因此直線最多能經(jīng)過5個小正方形.

(問題解決):

1)有同樣大小的小正方形16個,拼成如圖4所示的的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過_________個小正方形.

2)有同樣大小的小正方形256個,拼成的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過___________個小正方形.

3)如果用一條直線穿過的大正方形的話,最多可以穿過___________個小正方形.

(問題拓展):

4)如果用一條直線穿過的大長方形的話(如圖5),最多可以穿過個___________小正方形.

5)如果用一條直線穿過的大長方形的話(如圖6),最多可以穿過___________個小正方形.

6)如果用一條直線穿過的大長方形的話,最多可以穿過________個小正方形.

(類比探究):

由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個面,類比上面問題解決的方法解決如下問題:

7)如圖7有同樣大小的小正方體8個,拼成如圖所示的的一個大的正方體.如果用一條直線穿過這個大正方體的話,最多可以穿過___________個小正方體.

8)如果用一條直線穿過的大正方體的話,最多可以穿過_________個小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,ACBC2,D是邊AC的中點,CEBDE.若F是邊AB上的點,且使AEF為等腰三角形,則AF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為,投人市場銷售時,調(diào)査市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量 (單位:千克)與銷售單價 (單位: )之間的函數(shù)關(guān)系如圖

(1)的函數(shù)解析式,并寫出的取值范圍;

(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大,最大利潤是多少?

(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年新型冠狀病毒肺炎(,簡稱為新冠肺炎)疫情在全球蔓延,我們國家堅決打贏這場無硝煙的人民戰(zhàn)爭,我市各單位為同學們的返校復學采取了一系列前所未有的舉措.復課返校后,為了拉大學生鍛煉的間距,某學校決定增購適合獨立訓練的兩種體育器材:跳繩和毽子,原來購進根跳繩和個毽子共需元;購進根跳繩和個鍵子共需元.

1)求跳繩和毽子的售價原來分別是多少元?

2)學校計劃購買跳繩和毽子兩種器材共個,由于受疫情影響,商場決定對這兩種器材打折銷售,其中跳繩以八折出售,毽子以七五折出售,學校要求跳繩的數(shù)量不少于毽子數(shù)量的倍,跳繩的數(shù)量不多于根,請你求出學;ㄥX最少的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是小花在一次放風箏活動中某時段的示意圖,她在A處時的風箏線(整個過程中風箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小花身高1.5米,當她從點A跑動9米到達點B處時,風箏線與水平線構(gòu)成45°角,此時風箏到達點E處,風箏的水平移動距離CF10米,這一過程中風箏線的長度保持不變,求風箏原來的高度C1D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個家電廠家在廣告中都聲稱,他們的某種電子產(chǎn)品在正常情況下的使用壽命都是年,經(jīng)質(zhì)量檢測部門對這三家銷售的產(chǎn)品的使用壽命進行跟蹤調(diào)查,統(tǒng)計結(jié)果如下:(單位:年)

甲廠:、、、、、、、

乙廠:、、、、、、、

丙廠:、、、、、、

請回答下面問題:

1)填空:

平均數(shù)

眾數(shù)

中位數(shù)

甲廠

_____

乙廠

______

丙廠

______

2)這三個廠家的銷售廣告分別利用了哪一種表示集中趨勢的特征數(shù);

3)如果你是顧客,你會買三家中哪一家的電子產(chǎn)品?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQOAOB于點Q,PMOBOA于點M

1)若∠AOB=45°,OM=4,OQ=,求證:CNOB;

2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.

①問:的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由;

②設菱形OMPQ的面積為S1,NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點D,交BC于點E,已知A,0),∠DOE=30°,則k的值為(

A.B.C.3D.3

查看答案和解析>>

同步練習冊答案