【題目】如圖,平行四邊形ABCD的對角線AC,BD交于點(diǎn)O,過點(diǎn)B作BP∥AC,過點(diǎn)C作CP∥BD,BP與CP相交于點(diǎn)P.
(1)判斷四邊形BPCO的形狀,并說明理由;
(2)若將平行四邊形ABCD改為菱形ABCD,其他條件不變,得到的四邊形BPCO是什么四邊形,并說明理由;
(3)若得到的是正方形BPCO,則四邊形ABCD是 .(選填平行四邊形、矩形、菱形、正方形中你認(rèn)為正確的一個(gè))
【答案】(1)四邊形BPCO為平行四邊形;(2)四邊形BPCO為矩形;(3)四邊形ABCD是正方形
【解析】
試題分析:(1)根據(jù)兩組對邊互相平行,即可得出四邊形BPCO為平行四邊形;
(2)根據(jù)菱形的對角線互相垂直,即可得出∠BOC=90°,結(jié)合(1)結(jié)論,即可得出四邊形BPCO為矩形;
(3)根據(jù)正方形的性質(zhì)可得出OB=OC,且OB⊥OC,再根據(jù)平行四邊形的性質(zhì)可得出OD=OB,OA=OC,進(jìn)而得出AC=BD,再由AC⊥BD,即可得出四邊形ABCD是正方形.
解:(1)四邊形BPCO為平行四邊形,理由如下:
∵BP∥AC,CP∥BD,
∴四邊形BPCO為平行四邊形.
(2)四邊形BPCO為矩形,理由如下:
∵四邊形ABCD為菱形,
∴AC⊥BD,則∠BOC=90°,
由(1)得四邊形BPCO為平行四邊形,
∴四邊形BPCO為矩形.
(3)四邊形ABCD是正方形,理由如下:
∵四邊形BPCO是正方形,
∴OB=OC,且OB⊥OC.
又∵四邊形ABCD是平行四邊形,
∴OD=OB,OA=OC,
∴AC=BD,
又∵AC⊥BD,
∴四邊形ABCD是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】資陽市2012年財(cái)政收入取得重大突破,地方公共財(cái)政收入用四舍五入取近似值后為27.39億元,那么這個(gè)數(shù)值【 】
A.精確到億位 B.精確到百分位 C.精確到千萬位 D.精確到百萬位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-a,a),點(diǎn)B的坐標(biāo)是(c,b),滿足.
(1)若x=2是3x-a<0的一個(gè)解,試判斷點(diǎn)A在第幾象限,并說明理由;
(2)若△AOB的面積是4,求點(diǎn)B的坐標(biāo);
(3)若兩個(gè)動(dòng)點(diǎn)E( e ,2e + 1) 、F( f ,-2f +3) ,請你探索是否存在以兩個(gè)動(dòng)點(diǎn)E、F為端點(diǎn)的線段EF∥AB,且EF=AB.若存在,求出E、F兩點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+mx-8=0的一個(gè)實(shí)數(shù)根為2,求另一個(gè)實(shí)數(shù)根及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地球七大洲的總面積約是149 480 000km2,對這個(gè)數(shù)據(jù)保留3個(gè)有效數(shù)字可表示為( )
A. 149km2 B. 1.5×108km2 C. 1.49×108km2 D. 1.50×108km2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.若a2=b2 , 則a=b
B.若a>b,則a2>b2
C.若a,b不全為零,則a2+b2>0
D.若a≠b,則a2≠b2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com