已知:如圖,⊙的直徑與弦(不是直徑)交于點(diǎn),若=2,,求的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動點(diǎn)P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點(diǎn)B向點(diǎn)A運(yùn)動,點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動且速度是點(diǎn)P運(yùn)動速度的2倍.
(1)求此拋物線的解析式和直線的解析式;
(2)如果點(diǎn)P和點(diǎn)Q同時出發(fā),運(yùn)動時間為t(秒),試問當(dāng)t為何值時,以A、P、Q為頂點(diǎn)的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大.若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線和直線. 當(dāng)y1>y2時,x的取值范圍是
A.0<x<2 | B.x<0或x>2 | C.x<0或x>4 | D.0<x<4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示:下列正多邊形都滿足,在正三角形中,我們可推得:;在正方形中,可推得:;在正五邊形中,可推得:,依此類推在正八邊形中, ,在正邊形中, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于,兩點(diǎn). C為二次函數(shù)圖象的頂點(diǎn).
(1)求二次函數(shù)的解析式;
(2)定義函數(shù)f:“當(dāng)自變量x任取一值時,x對應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).” 當(dāng)直線(k >0)與函數(shù)f的圖象只有兩個交點(diǎn)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀下面的材料:
小明遇到一個問題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長線交射線CD于點(diǎn)G. 如果,求的值.
他的做法是:過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.
請你回答:(1)AB和EH的數(shù)量關(guān)系為 ,CG和EH的數(shù)量關(guān)系為 ,的值為 .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為 (用含a的代數(shù)式表示).
(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為 (用含m,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,∠AOB=90º,將Rt△OAB繞點(diǎn)O按逆時針方向旋轉(zhuǎn)至Rt△OA′B′,使點(diǎn)B恰好落在邊A′B′上.已知tanA=,OB=5,則BB′= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com