【題目】某商場購進一種單價為40元的書包,如果以單價50元出售,那么每月可售出30個,根據(jù)銷售經(jīng)驗,售價每提高5元,銷售量相應減少1個.

1)請寫出總的銷售利潤y元與銷售單價提高x元之間的函數(shù)關系式;

2)如果你是經(jīng)理,為使每月的銷售利潤最大,那么你確定這種書包的單價為多少元?此時,最大利潤是多少元?

【答案】(1)y=50+x40)(30 )(0≤x≤150);(2當這種書包的單價為120元時,每月的銷售利潤最大為1280元.

【解析】試題分析:1)根據(jù)題意可以求得銷售單價提高x元與總的銷售利潤y元之間的函數(shù)關系式;
2)將(1)中的函數(shù)解析式化為頂點式即可解答本題.

試題解析:(1)由題意可得,

即銷售單價提高x元與總的銷售利潤y元之間的函數(shù)關系式

(2)

∴當x=70時,y取得最大值,此時y=1280

這種書包的單價為:50+70=120

即為使每月的銷售利潤最大,這種書包的單價為120元,此時,最大利潤是1280.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線 軸交于點C,與軸交于點B,與反比例函數(shù)的圖象在第一象限交于點A,連接OA,若,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名足球守門員練習折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門員最后是否回到了球門線的位置?

(2)在練習過程中,守門員離開球門最遠距離是多少米?

(3)守門員全部練習結束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點OBEAC,AEBD,OEAB交于點F.

1)試判斷四邊形AEBO的形狀,并說明理由;

2)若OE=10,AC=16,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE

1)求證:AC平分∠DAB;

2)求證:△PCF是等腰三角形;

3)若∠BEC=30°,求證:以BC,BEAC邊的三角形為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx2x軸交于A、B兩點,與y軸交于C點,且A1,0).

1)求拋物線的解析式及頂點D的坐標;

2)判斷△ABC的形狀,證明你的結論;

3)點M是拋物線對稱軸上的一個動點,當△ACM的周長最小時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:小聰遇到這樣一個問題: 如圖1,,請畫一個,使互補.

小聰是這樣思考的:首先通過分析明確射線的外部,畫出示意圖,如圖2所示:然后通過構造平角找到的補角,

如圖3所示:進而分析要使互補,則需.

因此,小聰找到了解決問題的方法:反向延長射線得到射線,利用量角器畫出的平分線,這樣就得到了互補

(1)小聰根據(jù)自己的畫法寫出了己知和求證,請你完成證明.已知:如圖3,點在直線上,射線平分.求證: 互補. .

(2)參考小聰?shù)漠嫹ǎ堅谙聢D中畫出--,使互余.(保留畫圖痕跡)

(3)已知互余,射線平分,射線平分.,直接寫出銳角的度數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會的重要交通保障設施. 如圖所示,京張高鐵起自北京北站,途經(jīng)清河、沙河、呂平等站,終點站為張家口南站,全長174千米.

1)根據(jù)資料顯示,京張高鐵的客運價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結果精確到個位);

2)京張高鐵建成后,將是世界上第一條設計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設計時速運行,那么每站(不計起始站和終點站)停靠的平均時間是多少分鐘?(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如何快速計算1+2+3+…+n 的值呢?

(1)探究:令s=1+2+3+…+n,則s=n+n-1+…+2+1

+②得2s=(n+1)(n+1)+…+(n+1)=n(n+1)

因此_________________.

(2)應用:

計算:________;

如圖1,一串連續(xù)的整數(shù)1,2,3,4,…,自上往下排列,最上面一行有一個數(shù),以下各行均比上一行多一個數(shù)字,若共有15行數(shù)字,則最底下一行最左邊的數(shù)是_______

如圖2,一串連續(xù)的整數(shù)-25,-24,-23,…,按圖1方式排列,共有14行數(shù)字,求圖2中所有數(shù)字的和.

查看答案和解析>>

同步練習冊答案