如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點(diǎn)B的切線與AD的延長(zhǎng)線交于F,過E作EG⊥BC于G,延長(zhǎng)GE交AD于H.
(1)求證:AH=HD;
(2)若cos∠C=
4
5
,DF=9,求⊙O的半徑.
(1)證明:∵AB為⊙O的直徑,DE=EC,
∴AB⊥CD,
∴∠C+∠CBE=90°,
∵EG⊥BC,
∴∠C+∠CEG=90°,
∴∠CBE=∠CEG,
∵∠CBE=∠CDA,∠CEG=∠DEH,
∴∠CDA=∠DEH,
∴HD=EH,
∵∠A+∠ADC=90°,∠AEH+∠DEH=90°,
∴AH=EH,
∴AH=HD;

(2)∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠BDF=90°,
∵BF是⊙O的切線,
∴∠DBF=∠C,
∵cos∠C=
4
5
,DF=9,
∴tan∠DBF=
3
4
,
∴BD=
DF
tan∠DBF
=12,
∵∠A=∠C,
∴sin∠A=
3
5
,
∴AB=
BD
sin∠A
=20,
∴⊙O的半徑為10.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑OA=
5
,弦AB=4,點(diǎn)C在弦AB上,以點(diǎn)C為圓心,CO為半徑的圓與線段OA相交于點(diǎn)E.
(1)求cosA的值;
(2)設(shè)AC=x,OE=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)點(diǎn)C在AB上運(yùn)動(dòng)時(shí),⊙C是否可能與⊙O相切?如果可能,請(qǐng)求出當(dāng)⊙C與⊙O相切時(shí)的AC的長(zhǎng);如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=120°,AC=BC,AB=6,O為AB的中點(diǎn),且以O(shè)為圓心的半圓與AC,BC分別相切于點(diǎn)D,E;
(1)求半圓O的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的半徑OA與小圓相交于點(diǎn)B,AC與小圓相切于點(diǎn)C,OC的延長(zhǎng)線與大圓相交于點(diǎn)D,AC與BD相交于點(diǎn)E.
求證:(1)BD是小圓的切線;
(2)CE:AE=OC:OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,切點(diǎn)分別是A、B,若∠APB=60°,PA=4.則⊙O的半徑是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,∠ACB=90°,以AC為直徑的⊙O交AB于D點(diǎn),過D作⊙O的切線交BC于E點(diǎn),EF⊥AB于F點(diǎn),連OE交DC于P,則下列結(jié)論,其中正確的有( 。
①BC=2DE;②OEAB;③DE=
2
PD;④AC•DF=DE•CD.
A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,O是正方形ABCD的對(duì)角線BD上一點(diǎn),⊙O與邊AB,BC都相切,點(diǎn)E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對(duì)折,折痕EF與⊙O相切,此時(shí)點(diǎn)D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長(zhǎng)是( 。
A.3B.4C.2+
2
D.2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA、PB切⊙O于A、B,若∠APB=60°,⊙O半徑為3,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個(gè)半圓的圓心.F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個(gè)半圓圓弧的中點(diǎn).

(1)如圖一,連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)過點(diǎn)A分別作半圓O1和半圓O2的切線,交BD的延長(zhǎng)線和CE的延長(zhǎng)線于點(diǎn)P和點(diǎn)Q,連接PQ,①如圖二,若∠ACB=90°,DB=5,CE=3,求線段PQ的長(zhǎng);②如圖三,若連接FA,猜想PQ與FA的位置關(guān)系,并說明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案