已知:如圖,?ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.

解:(1)在?ABCD中,
AB=CD,AB∥CD.
∵E、F分別是AB、CD的中點,

∴BE=DF.
∴四邊形EBFD是平行四邊形

(2)∵AD=AE,∠A=60°,
∴△ADE是等邊三角形.
∴DE=AD=2,
又∵BE=AE=2,
由(1)知四邊形EBFD是平行四邊形,
∴四邊形EBFD的周長=2(BE+DE)=8.
分析:1、在?ABCD中,AB=CD,AB∥CD,又E、F分別是邊AB、CD的中點,所以BE=CF,因此四邊形EBFD是平行四邊形
2、由AD=AE=2,∠A=60°知△ADE是等邊三角形,又E、F分別是邊AB、CD的中點,四邊形EBFD是平行四邊形,所以EB=BF=FD=DE=2,四邊形EBFD是平行四邊形的周長是2+2+2+2=8
點評:本題考查了平行四邊形的判定與性質,熟練掌握性質定理和判定定理是解題的關鍵.平行四邊形的五種判定方法與平行四邊形的性質相呼應,每種方法都對應著一種性質,在應用時應注意它們的區(qū)別與聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案