【題目】如圖,點A是反比例函數(shù)y= (>0)的圖象上任意一點,AB∥x軸交反比例函數(shù)y=﹣ 的圖象于點B,以AB為邊作平行四邊形ABCD,其中C,D在x軸上,則平行四邊形ABCD的面積為(
A.2
B.3
C.4
D.5

【答案】D
【解析】解:設A的縱坐標是b,則B的縱坐標也是b. 把y=b代入y= 得,b= ,則x= ,即A的橫坐標是 ,
同理可得:B的橫坐標是:﹣
則AB= ﹣(﹣ )=
則S□ABCD= ×b=5.
故選D.
【考點精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義和平行四邊形的性質的相關知識可以得到問題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一漁船自西向東追趕魚群,在A處測得某無名小島C在北偏東60°方向上,前進2海里到達B點,此時測得無名小島C在東北方向上.已知無名小島周圍2.5海里內有暗礁,問漁船繼續(xù)追趕魚群有無觸礁危險?(參考數(shù)據(jù): =1.414, =1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當∠BOD=°時,四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE⊥CD,垂足為E,AF⊥BC,垂足為F,AD=4,BF=3,∠EAF=60°,設 = ,如果向量 =k (k≠0),那么k的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將三角尺的直角頂點放在直線a上,a∥b,∠1=50°,∠2=60°,則∠3的度數(shù)為(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連結CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結DF,給出以下四個結論:① = ;②若點D是AB的中點,則AF= AB;③當B、C、F、D四點在同一個圓上時,DF=DB;④若 = ,則SABC=9SBDF , 其中正確的結論序號是( )

A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數(shù)).其中正確結論的有(
A.①②③
B.①③④
C.③④⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長AB、DC交于點E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD,下列結論中正確的有(填上所有正確結論的序號) ①GH∥DC;
②EG∥AD;
③EH=FG;
④當∠ABC與∠DCB互余時,四邊形EFGH是正方形.

查看答案和解析>>

同步練習冊答案