如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線l,過點B作l的垂線BD,垂足為D,BD與⊙O交于點E.
(1)求∠AEC的度數(shù);
(2)求證:四邊形OBEC是菱形.
(1)∵OA=OC=
1
2
AB
=2,AC=2,
∴OA=OC=AC,
∴△OAC為等邊三角形,(1分)
∴∠AOC=60°,(2分)
∵圓周角∠AEC與圓心角∠AOC都對弧
AC
,
∴∠AEC=
1
2
∠AOC=30°;(3分)
(2)∵直線l切⊙O于C,
∴OC⊥CD,(4分)
又BD⊥CD,
∴OCBD,(5分)
∴∠B=∠AOC=60°,
∵AB為⊙O直徑,
∴∠AEB=90°,又∠AEC=30°,
∴∠DEC=90°-∠AEC=60°,
∴∠B=∠DEC,
∴CEOB,(7分)
∴四邊形OBEC為平行四邊形,(8分)
又OB=OC,
∴四邊形OBEC為菱形.(9分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,過點P引圓的兩條割線PAB和PCD,分別交圓于點A,B和C,D,連接AC,BD,則在下列各比例式中,①
PA
PB
=
PC
PD
;②
PA
PD
=
PC
PB
;③
PA
AC
=
PD
BD
,成立的有______(把你認為成立的比例式的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C,∠DAB=∠B=30°.
(1)求證:直線BD與⊙O相切;
(2)若AC=10,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在Rt△ABC中,∠C=Rt∠,a、b、c分別是∠A,∠B,∠C的對邊,且a:b=3:4,a+b=c+4.
(1)求a、b長;
(2)若D是AB上的定點,以BD為直徑的⊙O恰好切AC于點E,求⊙O的半徑r;
(3)若⊙O的圓心O是AB上的動點,求⊙O的半徑r在怎樣的取值范圍內(nèi),能使⊙O與AC相切,且與BC所在直線相交?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BD是⊙O的直徑,OA⊥OB,M是劣弧AB上的一點,過點M作⊙O的切線MP交OA的延長線于點P,MD與OA交于點N.
(1)求證:PM=PN;
(2)若BC=3,PA=
3
5
BO,過點B作BCMP交⊙O于點C,求BO的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在△ABC中,AB=AC=2,∠A=90°,O為BC的中點,動點E在BA邊上自由移動,動點F在AC邊上自由移動.
(1)點E,F(xiàn)的移動過程中,△OEF是否能成為∠EOF=45°的等腰三角形?若能,請指出△OEF為等腰三角形時動點E,F(xiàn)的位置;若不能,請說明理由;
(2)當∠EOF=45°時,設(shè)BE=x,CF=y,求y與x之間的函數(shù)解析式,寫出x的取值范圍;
(3)在滿足(2)中的條件時,若以O(shè)為圓心的圓與AB相切(如圖2),試探究直線EF與⊙O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O1的半徑為1,正方形ABCD的邊長為6,點O2為正方形ABCD的中心,O1O2垂直AB于P點,O1O2=8.若將⊙O1繞點P按順時針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,⊙O1與正方形ABCD的邊只有一個公共點的情況一共出現(xiàn)( 。
A.3次B.5次C.6次D.7次

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在⊙O的外切梯形ABCD中,ADBC,則∠DOC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求證:AT平分∠BAC;
(2)若AD=2,TC=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案